Dominator Coloring of Total Graph of Path and Cycle

Q4 Engineering
M. Shukla, Foram Chandarana
{"title":"Dominator Coloring of Total Graph of Path and Cycle","authors":"M. Shukla, Foram Chandarana","doi":"10.21595/mme.2023.23228","DOIUrl":null,"url":null,"abstract":"<jats:p>A dominator coloring of a graph <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> is a proper coloring in which every vertex of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> dominates every vertex of at least one-color class possibly its own class and each color class is dominated by at least one vertex. The minimum number of colors required for dominator coloring of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> is called the dominator chromatic number of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> and is denoted by <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>. In this paper, we have established the relation between dominator chromatic number <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>, chromatic number <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>χ</mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math> and domination number <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>γ</mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>. We have investigated results on total graphs of path and cycle with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>χ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>γ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>χ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>γ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>-</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mn>1</mml:mn></mml:math>. </jats:p>","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2023.23228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A dominator coloring of a graph G is a proper coloring in which every vertex of G dominates every vertex of at least one-color class possibly its own class and each color class is dominated by at least one vertex. The minimum number of colors required for dominator coloring of G is called the dominator chromatic number of G and is denoted by χdG. In this paper, we have established the relation between dominator chromatic number χdG, chromatic number χG and domination number γG. We have investigated results on total graphs of path and cycle with χdG = χ G + γ G and χdG = χ G + γ G - 1.
路径和循环的全图的支配着色
图G的支配着色是一个适当的着色,其中G的每个顶点支配至少一个颜色类的每个顶点,可能是它自己的类,并且每个颜色类由至少一个顶点支配。G的支配着色所需的最小色数称为G的支配色数,用χdG表示。本文建立了主色数χdG、色数χG和主色数γG之间的关系。我们研究了具有χdG=。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信