CFD modeling of subsonic and sonic methane gas release and dispersion

Q3 Engineering
Levente Tugyi, Z. Siménfalvi, G. Szepesi, C. Kecskés, Zoltán Kerekes, Tamás Sári
{"title":"CFD modeling of subsonic and sonic methane gas release and dispersion","authors":"Levente Tugyi, Z. Siménfalvi, G. Szepesi, C. Kecskés, Zoltán Kerekes, Tamás Sári","doi":"10.1556/606.2023.00789","DOIUrl":null,"url":null,"abstract":"In the event of a flammable liquid, gas, or vapor release the first step is to identify the type of outflow, which can fall into two categories sonic or subsonic. The two types of outflows carry different flow characteristics, which effect on the extent of the potentially explosive areas. In case of subsonic outflow, a short jet is formed without turbulent flow conditions at low velocity, which appears more concentrated around the source of release. With sonic outflow, a high velocity jet is formed with turbulent flow properties, which can extend further away from the source of release. The simulations examine the lower explosion limit of the flammable medium around the vessel where LEL20% or LEL40%. In addition, high temperature methane gas release was also presented.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2023.00789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In the event of a flammable liquid, gas, or vapor release the first step is to identify the type of outflow, which can fall into two categories sonic or subsonic. The two types of outflows carry different flow characteristics, which effect on the extent of the potentially explosive areas. In case of subsonic outflow, a short jet is formed without turbulent flow conditions at low velocity, which appears more concentrated around the source of release. With sonic outflow, a high velocity jet is formed with turbulent flow properties, which can extend further away from the source of release. The simulations examine the lower explosion limit of the flammable medium around the vessel where LEL20% or LEL40%. In addition, high temperature methane gas release was also presented.
亚音速和音速甲烷气体释放和扩散的CFD建模
在易燃液体、气体或蒸汽释放的情况下,第一步是确定流出的类型,可分为音速或亚音速两类。这两种类型的外流具有不同的流动特征,这会影响潜在爆炸区的范围。在亚音速流出的情况下,在没有湍流条件的情况下形成了低速的短射流,这似乎更集中在释放源周围。在声波流出的情况下,形成了具有湍流特性的高速射流,该射流可以进一步远离释放源。模拟检查了容器周围易燃介质的爆炸下限,其中LEL20%或LEL40%。此外,还介绍了高温甲烷气体的释放情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pollack Periodica
Pollack Periodica Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
82
期刊介绍: Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信