Potential economic impacts of groundwater conservation in the Mississippi River Alluvial Aquifer (MRAA), Louisiana, USA

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Bhatta, K. Paudel, Bin Li
{"title":"Potential economic impacts of groundwater conservation in the Mississippi River Alluvial Aquifer (MRAA), Louisiana, USA","authors":"D. Bhatta, K. Paudel, Bin Li","doi":"10.1111/nrm.12330","DOIUrl":null,"url":null,"abstract":"Overextraction of groundwater reduces groundwater height, increases the energy cost, and may threaten an aquifer's economic life. Water‐intensive crops, corn, and soybean, dominate the agricultural land in the Mississippi River Alluvial Aquifer (MRAA) region of the United States, thus stressing this confined aquifer. Groundwater conservation policy or the adoption of efficient irrigation technology could save both water and energy. This study aims to estimate the future returns from the irrigated land under the scenarios of 30%, 20%, 10%, 5%, and no groundwater conservation from 2020 to 2022. An accurate model to predict the crop choice decision is important to estimate the impact of groundwater policies. We develop a crop choice model where an individual farmer has a crop planting or land fallowing choice each year. We use the random forest, boosted regression trees, and support vector machine for the crop choice prediction. Boosted regression trees perform the best in our classification problem with 75.5% out of sample accuracy. The prediction model shows that the numbers of corn growers increase in the future. Our results show that the profit of 2572 farmers increased cumulatively by 0.14% when they conserve groundwater by 30% for 3 years. From a policy perspective, providing financial and technical assistant to farmers for making investments to conserve groundwater could save energy costs and sustain the economic life of the MRAA.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Overextraction of groundwater reduces groundwater height, increases the energy cost, and may threaten an aquifer's economic life. Water‐intensive crops, corn, and soybean, dominate the agricultural land in the Mississippi River Alluvial Aquifer (MRAA) region of the United States, thus stressing this confined aquifer. Groundwater conservation policy or the adoption of efficient irrigation technology could save both water and energy. This study aims to estimate the future returns from the irrigated land under the scenarios of 30%, 20%, 10%, 5%, and no groundwater conservation from 2020 to 2022. An accurate model to predict the crop choice decision is important to estimate the impact of groundwater policies. We develop a crop choice model where an individual farmer has a crop planting or land fallowing choice each year. We use the random forest, boosted regression trees, and support vector machine for the crop choice prediction. Boosted regression trees perform the best in our classification problem with 75.5% out of sample accuracy. The prediction model shows that the numbers of corn growers increase in the future. Our results show that the profit of 2572 farmers increased cumulatively by 0.14% when they conserve groundwater by 30% for 3 years. From a policy perspective, providing financial and technical assistant to farmers for making investments to conserve groundwater could save energy costs and sustain the economic life of the MRAA.
美国路易斯安那州密西西比河冲积含水层(MRAA)地下水保护的潜在经济影响
地下水的过度开采降低了地下水位,增加了能源成本,并可能威胁到含水层的经济寿命。在美国密西西比河冲积含水层(MRAA)地区,玉米和大豆等水密集型作物占据了农业用地,因此对这一承压含水层造成了压力。地下水保护政策或采用高效灌溉技术可以节约水和能源。本研究旨在估算2020 - 2022年30%、20%、10%、5%和不涵养地下水情景下的未来灌溉土地收益。一个准确的预测作物选择决策的模型对于估计地下水政策的影响是非常重要的。我们开发了一种作物选择模型,每个农民每年都可以选择种植作物或休耕。我们使用随机森林、增强回归树和支持向量机进行作物选择预测。增强回归树在我们的分类问题中表现最好,样本外准确率为75.5%。预测模型表明,未来玉米种植者的数量将会增加。结果表明,在连续3年节约地下水30%的情况下,2572户农户的利润累计增长0.14%。从政策的角度来看,向农民提供资金和技术援助,帮助他们投资保护地下水,可以节省能源成本,维持MRAA的经济生命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信