A gradient projection method for semi-supervised hypergraph clustering problems

IF 0.4 4区 数学 Q4 MATHEMATICS, APPLIED
Jingya Chang, Dongdong Liu, Min Xi
{"title":"A gradient projection method for semi-supervised hypergraph clustering problems","authors":"Jingya Chang, Dongdong Liu, Min Xi","doi":"10.61208/pjo-2023-025","DOIUrl":null,"url":null,"abstract":"Semi-supervised clustering problems focus on clustering data with labels. In this paper,we consider the semi-supervised hypergraph problems. We use the hypergraph related tensor to construct an orthogonal constrained optimization model. The optimization problem is solved by a retraction method, which employs the polar decomposition to map the gradient direction in the tangent space to the Stefiel manifold. A nonmonotone curvilinear search is implemented to guarantee reduction in the objective function value. Convergence analysis demonstrates that the first order optimality condition is satisfied at the accumulation point. Experiments on synthetic hypergraph and hypergraph given by real data demonstrate the effectivity of our method.","PeriodicalId":49716,"journal":{"name":"Pacific Journal of Optimization","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61208/pjo-2023-025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-supervised clustering problems focus on clustering data with labels. In this paper,we consider the semi-supervised hypergraph problems. We use the hypergraph related tensor to construct an orthogonal constrained optimization model. The optimization problem is solved by a retraction method, which employs the polar decomposition to map the gradient direction in the tangent space to the Stefiel manifold. A nonmonotone curvilinear search is implemented to guarantee reduction in the objective function value. Convergence analysis demonstrates that the first order optimality condition is satisfied at the accumulation point. Experiments on synthetic hypergraph and hypergraph given by real data demonstrate the effectivity of our method.
半监督超图聚类问题的梯度投影方法
半监督聚类问题主要关注带标签的数据聚类问题。本文研究一类半监督超图问题。利用超图相关张量构造了一个正交约束优化模型。利用极坐标分解将切空间中的梯度方向映射到stefield流形上,采用缩回法求解优化问题。采用非单调曲线搜索来保证目标函数值的减小。收敛性分析表明,该算法在累加点处满足一阶最优性条件。在合成超图和实际数据给出的超图上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pacific Journal of Optimization
Pacific Journal of Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-MATHEMATICS, APPLIED
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信