{"title":"Simulation analysis of intake transition section steel lining for hydropower station penstock","authors":"W. Ma, Q. Guo, Yong Zeng","doi":"10.1504/ijmmp.2019.10024755","DOIUrl":null,"url":null,"abstract":"To improve the bending stiffness of steel plate structure, anchor bars and stiffeners are used to anchor the thin steel plate in the intake transition section in the concrete. In this paper, the finite element method is used to simulate the steel lining at the penstock intake transition section of hydropower station. The analysis results show that, the overall deformation of steel lining structure is small, which can meet the requirement of stiffness, the stress of steel lining structure is complex, the stress concentration at the stiffening ring is very high, the stress value of other parts is low, and the general stress value does not exceed 43.0 MPa, and the stress distribution is more uniform. The structural stress value of dam in the gate section is relatively low, through conventional reinforcement can meet the design requirements.","PeriodicalId":35049,"journal":{"name":"International Journal of Microstructure and Materials Properties","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microstructure and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmp.2019.10024755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the bending stiffness of steel plate structure, anchor bars and stiffeners are used to anchor the thin steel plate in the intake transition section in the concrete. In this paper, the finite element method is used to simulate the steel lining at the penstock intake transition section of hydropower station. The analysis results show that, the overall deformation of steel lining structure is small, which can meet the requirement of stiffness, the stress of steel lining structure is complex, the stress concentration at the stiffening ring is very high, the stress value of other parts is low, and the general stress value does not exceed 43.0 MPa, and the stress distribution is more uniform. The structural stress value of dam in the gate section is relatively low, through conventional reinforcement can meet the design requirements.
期刊介绍:
IJMMP publishes contributions on mechanical, electrical, magnetic and optical properties of metal, ceramic and polymeric materials in terms of the crystal structure and microstructure. Papers treat all aspects of materials, i.e., their selection, characterisation, transformation, modification, testing, and evaluation in the decision-making phase of product design/manufacture. Contributions in the fields of product, design and improvement of material properties in various production processes are welcome, along with scientific papers on new technologies, processes and materials, and on the modelling of processes.