Semi-Proximal Point Method for Nonsmooth Convex-Concave Minimax Optimization

IF 0.9 4区 数学 Q2 MATHEMATICS
Yuhong Dai, Jiani Zhang
{"title":"Semi-Proximal Point Method for Nonsmooth Convex-Concave Minimax Optimization","authors":"Yuhong Dai, Jiani Zhang","doi":"10.4208/jcm.2301-m2022-0099","DOIUrl":null,"url":null,"abstract":"Minimax optimization problems are an important class of optimization problems arising from modern machine learning and traditional research areas. While there have been many numerical algorithms for solving smooth convex-concave minimax problems, numerical algorithms for nonsmooth convex-concave minimax problems are rare. This paper aims to develop an efficient numerical algorithm for a structured nonsmooth convex-concave minimax problem. A semi-proximal point method (SPP) is proposed, in which a quadratic convex-concave function is adopted for approximating the smooth part of the objective function and semi-proximal terms are added in each subproblem. This construction enables the subproblems at each iteration are solvable and even easily solved when the semiproximal terms are cleverly chosen. We prove the global convergence of our algorithm under mild assumptions, without requiring strong convexity-concavity condition. Under the locally metrical subregularity of the solution mapping, we prove that our algorithm has the linear rate of convergence. Preliminary numerical results are reported to verify the efficiency of our algorithm.","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jcm.2301-m2022-0099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Minimax optimization problems are an important class of optimization problems arising from modern machine learning and traditional research areas. While there have been many numerical algorithms for solving smooth convex-concave minimax problems, numerical algorithms for nonsmooth convex-concave minimax problems are rare. This paper aims to develop an efficient numerical algorithm for a structured nonsmooth convex-concave minimax problem. A semi-proximal point method (SPP) is proposed, in which a quadratic convex-concave function is adopted for approximating the smooth part of the objective function and semi-proximal terms are added in each subproblem. This construction enables the subproblems at each iteration are solvable and even easily solved when the semiproximal terms are cleverly chosen. We prove the global convergence of our algorithm under mild assumptions, without requiring strong convexity-concavity condition. Under the locally metrical subregularity of the solution mapping, we prove that our algorithm has the linear rate of convergence. Preliminary numerical results are reported to verify the efficiency of our algorithm.
非光滑凸凹极小极大优化的半近点法
极小极大优化问题是现代机器学习和传统研究领域中产生的一类重要的优化问题。虽然已经有很多数值算法来求解光滑凸-凹极小极大问题,但求解非光滑凸-凸极小极大问题的数值算法很少。本文旨在开发一个有效的数值算法来求解一个结构非光滑凸凹极小极大问题。提出了一种半近点方法(SPP),该方法采用二次凸凹函数逼近目标函数的光滑部分,并在每个子问题中添加半近项。这种构造使得每次迭代时的子问题都是可解的,甚至在巧妙地选择半近似项时也很容易求解。在不需要强凸-凹条件的情况下,我们在温和的假设下证明了算法的全局收敛性。在解映射的局部度量子正则性下,我们证明了我们的算法具有线性收敛速度。报告了初步的数值结果,以验证我们算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
1130
审稿时长
2 months
期刊介绍: Journal of Computational Mathematics (JCM) is an international scientific computing journal founded by Professor Feng Kang in 1983, which is the first Chinese computational mathematics journal published in English. JCM covers all branches of modern computational mathematics such as numerical linear algebra, numerical optimization, computational geometry, numerical PDEs, and inverse problems. JCM has been sponsored by the Institute of Computational Mathematics of the Chinese Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信