On sign changes of primitive Fourier coefficients of Siegel cusp forms

Pub Date : 2021-03-25 DOI:10.7169/facm/2101
K. D. Shankhadhar, P. Tiwari
{"title":"On sign changes of primitive Fourier coefficients of Siegel cusp forms","authors":"K. D. Shankhadhar, P. Tiwari","doi":"10.7169/facm/2101","DOIUrl":null,"url":null,"abstract":"In this article, we establish quantitative results for sign changes in certain subsequences of primitive Fourier coefficients of a non-zero Siegel cusp form of arbitrary degree over congruence subgroups. As a corollary of our result for degree two Siegel cusp forms, we get sign changes of its diagonal Fourier coefficients. In the course of our proofs, we prove the non-vanishing of certain type of Fourier-Jacobi coefficients of a Siegel cusp form and all theta components of certain Jacobi cusp forms of arbitrary degree over congruence subgroups, which are also of independent interest.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we establish quantitative results for sign changes in certain subsequences of primitive Fourier coefficients of a non-zero Siegel cusp form of arbitrary degree over congruence subgroups. As a corollary of our result for degree two Siegel cusp forms, we get sign changes of its diagonal Fourier coefficients. In the course of our proofs, we prove the non-vanishing of certain type of Fourier-Jacobi coefficients of a Siegel cusp form and all theta components of certain Jacobi cusp forms of arbitrary degree over congruence subgroups, which are also of independent interest.
分享
查看原文
关于Siegel尖点形式的原始傅立叶系数的符号变化
在本文中,我们建立了同余子群上任意度的非零Siegel尖点形式的原始傅立叶系数的某些子序列的符号变化的定量结果。作为二阶Siegel尖点形式结果的推论,我们得到了它的对角傅立叶系数的符号变化。在我们的证明过程中,我们证明了Siegel尖点形式的某些类型的傅立叶-雅可比系数和同余子群上任意度的某些雅可比尖点形式所有θ分量的不消失,这也是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信