Miao Cai, Junru Shen, Bin Tang, Hao Huang, Baoliu Ye
{"title":"Exploiting Flat Namespace to Improve File System Metadata Performance on Ultra-fast, Byte-addressable NVMs","authors":"Miao Cai, Junru Shen, Bin Tang, Hao Huang, Baoliu Ye","doi":"10.1145/3620673","DOIUrl":null,"url":null,"abstract":"The conventional file system provides a hierarchical namespace by structuring it as a directory tree. Tree-based namespace structure leads to inefficient file path walk and expensive namespace tree traversal, underutilizing ultra-low access latency and superior sequential performance provided by non-volatile memories (NVMs). This paper proposes FlatFS+, an NVM file system that features a flat namespace architecture while providing a compatible hierarchical namespace view. FlatFS+ incorporates three novel techniques: direct file path walk model, range-optimized Br tree, and compressed index key design with scan and write dual optimization, to fully exploit flat namespace to improve file system metadata performance on ultra-fast, byte-addressable NVMs. Evaluation results demonstrate that FlatFS+ achieves significant performance improvements for metadata-intensive benchmarks and real-world applications compared to other file systems.","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3620673","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The conventional file system provides a hierarchical namespace by structuring it as a directory tree. Tree-based namespace structure leads to inefficient file path walk and expensive namespace tree traversal, underutilizing ultra-low access latency and superior sequential performance provided by non-volatile memories (NVMs). This paper proposes FlatFS+, an NVM file system that features a flat namespace architecture while providing a compatible hierarchical namespace view. FlatFS+ incorporates three novel techniques: direct file path walk model, range-optimized Br tree, and compressed index key design with scan and write dual optimization, to fully exploit flat namespace to improve file system metadata performance on ultra-fast, byte-addressable NVMs. Evaluation results demonstrate that FlatFS+ achieves significant performance improvements for metadata-intensive benchmarks and real-world applications compared to other file systems.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.