Local sampling of the SU(1,1) Wigner function

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
N. Fabre, A. Klimov, G. Leuchs, L. Sánchez‐Soto
{"title":"Local sampling of the SU(1,1) Wigner function","authors":"N. Fabre, A. Klimov, G. Leuchs, L. Sánchez‐Soto","doi":"10.1116/5.0134784","DOIUrl":null,"url":null,"abstract":"Despite its indisputable merits, the Wigner phase-space formulation has not been widely explored for systems with SU(1,1) symmetry, as a simple operational definition of the Wigner function has proved elusive in this case. We capitalize on unique properties of the parity operator, to derive in a consistent way a bona fide SU(1,1) Wigner function that faithfully parallels the structure of its continuous-variable counterpart. We propose an optical scheme, involving a squeezer and photon-number-resolving detectors, that allows for direct point-by-point sampling of that Wigner function. This provides an adequate framework to represent SU(1,1) states satisfactorily.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0134784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite its indisputable merits, the Wigner phase-space formulation has not been widely explored for systems with SU(1,1) symmetry, as a simple operational definition of the Wigner function has proved elusive in this case. We capitalize on unique properties of the parity operator, to derive in a consistent way a bona fide SU(1,1) Wigner function that faithfully parallels the structure of its continuous-variable counterpart. We propose an optical scheme, involving a squeezer and photon-number-resolving detectors, that allows for direct point-by-point sampling of that Wigner function. This provides an adequate framework to represent SU(1,1) states satisfactorily.
SU(1,1) Wigner函数的局部抽样
尽管具有无可争议的优点,但对于SU(1,1)对称系统,Wigner相空间公式尚未得到广泛的探索,因为在这种情况下,Wigner函数的简单操作定义已被证明是难以捉摸的。我们利用宇称算子的唯一性质,以一致的方式推导出一个真正的SU(1,1) Wigner函数,它忠实地平行于它的连续变量对应函数的结构。我们提出了一种光学方案,包括挤压器和光子数解析探测器,允许对该维格纳函数进行直接逐点采样。这提供了一个足够的框架来令人满意地表示SU(1,1)状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信