A Comparison of Different Bayesian Models for Leukemia Data

Q3 Business, Management and Accounting
M. Rafique, Sajid Ali, Ismail Shah, B. Ashraf
{"title":"A Comparison of Different Bayesian Models for Leukemia Data","authors":"M. Rafique, Sajid Ali, Ismail Shah, B. Ashraf","doi":"10.1080/01966324.2021.1957730","DOIUrl":null,"url":null,"abstract":"Abstract Different probability models are used to model survival data. However, it is important to know which model describe best the data because if the assumptions for parametric methods hold, the resulting estimates have smaller standard errors and are easier to interpret and helps in predictions. This article presents the Bayesian censored data modeling assuming Gumbel, double exponential, exponentially modified Gaussian, Weibull, and lognormal distributions as sampling models. In particular, a historical Leukemia data set is used to show the comparison among different models. Markov Chain Monte Carlo (MCMC) methods are used to compute the posterior summaries. Different model selection criteria, like, Akaike Information Criterion (AIC), Deviance Information Criterion (DIC), Leave-one-out Cross-Validation (LOOCV), and Watanabe-Akaike Information Criterion (WAIC) are used for model selection. It is observed from the comparative study that the lognormal model has the minimum values of different model selection criteria and considered to be the best for this Leukemia data.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"244 - 258"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1957730","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1957730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Different probability models are used to model survival data. However, it is important to know which model describe best the data because if the assumptions for parametric methods hold, the resulting estimates have smaller standard errors and are easier to interpret and helps in predictions. This article presents the Bayesian censored data modeling assuming Gumbel, double exponential, exponentially modified Gaussian, Weibull, and lognormal distributions as sampling models. In particular, a historical Leukemia data set is used to show the comparison among different models. Markov Chain Monte Carlo (MCMC) methods are used to compute the posterior summaries. Different model selection criteria, like, Akaike Information Criterion (AIC), Deviance Information Criterion (DIC), Leave-one-out Cross-Validation (LOOCV), and Watanabe-Akaike Information Criterion (WAIC) are used for model selection. It is observed from the comparative study that the lognormal model has the minimum values of different model selection criteria and considered to be the best for this Leukemia data.
白血病数据的不同贝叶斯模型的比较
摘要不同的概率模型用于生存数据的建模。然而,知道哪个模型最能描述数据是很重要的,因为如果参数方法的假设成立,得到的估计有更小的标准误差,更容易解释并有助于预测。本文介绍了假设甘贝尔分布、双指数分布、指数修正高斯分布、威布尔分布和对数正态分布作为抽样模型的贝叶斯截尾数据建模。特别地,使用历史白血病数据集来显示不同模型之间的比较。采用马尔科夫链蒙特卡罗(MCMC)方法计算后验总结。模型选择采用了赤池信息准则(AIC)、偏差信息准则(DIC)、留一交叉验证(LOOCV)、渡边赤池信息准则(WAIC)等不同的模型选择准则。从比较研究中可以看出,对数正态模型具有不同模型选择标准的最小值,被认为是该白血病数据的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信