{"title":"Quasiconformal Jordan Domains","authors":"Toni Ikonen","doi":"10.1515/agms-2020-0127","DOIUrl":null,"url":null,"abstract":"Abstract We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY). We say that a metric space (Y, dY) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \\ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY) that is quasiconformal in the geometric sense. We show that ϕ has a continuous, monotone, and surjective extension Φ: 𝔻 ̄ → Y ̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for Φ to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of Φ to 𝕊1 being a quasisymmetry and to ∂Y being bi-Lipschitz equivalent to a quasicircle in the plane.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY). We say that a metric space (Y, dY) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY) that is quasiconformal in the geometric sense. We show that ϕ has a continuous, monotone, and surjective extension Φ: 𝔻 ̄ → Y ̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for Φ to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of Φ to 𝕊1 being a quasisymmetry and to ∂Y being bi-Lipschitz equivalent to a quasicircle in the plane.