Cris R Hasan;Hinke M Osinga;Claire M Postlethwaite;Alastair M Rucklidge
{"title":"Numerical continuation of spiral waves in heteroclinic networks of cyclic dominance","authors":"Cris R Hasan;Hinke M Osinga;Claire M Postlethwaite;Alastair M Rucklidge","doi":"10.1093/imamat/hxab027","DOIUrl":null,"url":null,"abstract":"Heteroclinic-induced spiral waves may arise in systems of partial differential equations that exhibit robust heteroclinic cycles between spatially uniform equilibria. Robust heteroclinic cycles arise naturally in systems with invariant subspaces, and their robustness is considered with respect to perturbations that preserve these invariances. We make use of particular symmetries in the system to formulate a relatively low-dimensional spatial two-point boundary-value problem in Fourier space that can be solved efficiently in conjunction with numerical continuation. The standard numerical set-up is formulated on an annulus with small inner radius, and Neumann boundary conditions are used on both inner and outer radial boundaries. We derive and implement alternative boundary conditions that allow for continuing the inner radius to zero and so compute spiral waves on a full disk. As our primary example, we investigate the formation of heteroclinic-induced spiral waves in a reaction–diffusion model that describes the spatiotemporal evolution of three competing populations in a 2D spatial domain—much like the Rock–Paper–Scissors game. We further illustrate the efficiency of our method with the computation of spiral waves in a larger network of cyclic dominance between five competing species, which describes the so-called Rock–Paper–Scissors–Lizard–Spock game.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 5","pages":"1141-1163"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9619537/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Heteroclinic-induced spiral waves may arise in systems of partial differential equations that exhibit robust heteroclinic cycles between spatially uniform equilibria. Robust heteroclinic cycles arise naturally in systems with invariant subspaces, and their robustness is considered with respect to perturbations that preserve these invariances. We make use of particular symmetries in the system to formulate a relatively low-dimensional spatial two-point boundary-value problem in Fourier space that can be solved efficiently in conjunction with numerical continuation. The standard numerical set-up is formulated on an annulus with small inner radius, and Neumann boundary conditions are used on both inner and outer radial boundaries. We derive and implement alternative boundary conditions that allow for continuing the inner radius to zero and so compute spiral waves on a full disk. As our primary example, we investigate the formation of heteroclinic-induced spiral waves in a reaction–diffusion model that describes the spatiotemporal evolution of three competing populations in a 2D spatial domain—much like the Rock–Paper–Scissors game. We further illustrate the efficiency of our method with the computation of spiral waves in a larger network of cyclic dominance between five competing species, which describes the so-called Rock–Paper–Scissors–Lizard–Spock game.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.