Resonant solutions for elliptic systems with Neumann boundary conditions

IF 0.8 4区 数学 Q2 MATHEMATICS
B. B. Delgado, R. Pardo
{"title":"Resonant solutions for elliptic systems with Neumann boundary conditions","authors":"B. B. Delgado, R. Pardo","doi":"10.58997/ejde.sp.02.d1","DOIUrl":null,"url":null,"abstract":"We consider a sublinear perturbation of an elliptic eigenvalue system with homogeneous Neumann boundary conditions. For oscillatory nonlinearities and using bifurcation from infinity, we prove the existence of an unbounded sequence of turning points and an unbounded sequence of resonant solutions. \nSee also https://ejde.math.txstate.edu/special/02/d1/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.d1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a sublinear perturbation of an elliptic eigenvalue system with homogeneous Neumann boundary conditions. For oscillatory nonlinearities and using bifurcation from infinity, we prove the existence of an unbounded sequence of turning points and an unbounded sequence of resonant solutions. See also https://ejde.math.txstate.edu/special/02/d1/abstr.html
具有Neumann边界条件的椭圆系统的共振解
考虑具有齐次诺依曼边界条件的椭圆型特征值系统的次线性扰动。对于振荡非线性,利用无穷分岔,证明了一个无界的转折点序列和一个无界的谐振解序列的存在性。参见https://ejde.math.txstate.edu/special/02/d1/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信