{"title":"Digital continuity of rotations in the 2D regular grids","authors":"Müge Saadetoğlu, Benedek Nagy, Aydın Avkan","doi":"10.1007/s10472-023-09891-w","DOIUrl":null,"url":null,"abstract":"<div><p>A digitized rigid motion is called digitally continuous if two neighbor pixels still stay neighbors after the motion. This concept plays important role when people or computers (artificial intelligence, machine vision) need to recognize the object shown in the image. In this paper, digital rotations of a pixel with its closest neighbors are of our interest. We compare the neighborhood motion map results among the three regular grids, when the center of rotation is the midpoint of a main pixel, a grid point (corner of a pixel) or an edge midpoint. The first measure about the quality of digital rotations is based on bijectivity, e.g., measuring how many of the cases produce bijective and how many produce not bijective neighborhood motion maps (Avkan et. al, 2022). Now, a second measure is investigated, the quality of bijective digital rotations is measured by the digital continuity of the resulted image: we measure how many of the cases are bijective and also digitally continuous. We show that rotations on the triangular grid prove to be digitally continuous at many more real angles and also as a special case, many more integer angles compared to the square grid or to the hexagonal grid with respect to the three different rotation centers.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 1","pages":"115 - 137"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09891-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A digitized rigid motion is called digitally continuous if two neighbor pixels still stay neighbors after the motion. This concept plays important role when people or computers (artificial intelligence, machine vision) need to recognize the object shown in the image. In this paper, digital rotations of a pixel with its closest neighbors are of our interest. We compare the neighborhood motion map results among the three regular grids, when the center of rotation is the midpoint of a main pixel, a grid point (corner of a pixel) or an edge midpoint. The first measure about the quality of digital rotations is based on bijectivity, e.g., measuring how many of the cases produce bijective and how many produce not bijective neighborhood motion maps (Avkan et. al, 2022). Now, a second measure is investigated, the quality of bijective digital rotations is measured by the digital continuity of the resulted image: we measure how many of the cases are bijective and also digitally continuous. We show that rotations on the triangular grid prove to be digitally continuous at many more real angles and also as a special case, many more integer angles compared to the square grid or to the hexagonal grid with respect to the three different rotation centers.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.