N. Mitrović, A. Petrovic, M. Milosevic, N. Momčilović, Ž. Mišković, T. Maneski, P. Popović
{"title":"Experimental and numerical study of globe valve housing","authors":"N. Mitrović, A. Petrovic, M. Milosevic, N. Momčilović, Ž. Mišković, T. Maneski, P. Popović","doi":"10.2298/HEMIND160516035M","DOIUrl":null,"url":null,"abstract":"Complex structure experimental analysis has always been a huge challenge for researchers. Conventional experimental methods ( e.g ., strain gauges) give only limited data sets regarding measurement on critical areas with high geometrical discontinuities. A 3D Digital Image Correlation method is an optical method that overcomes the limitations of conventional methods and enables full-field displacement and strain measurement of geometrically complex structures. System Aramis, based on Digital Image Correlation method, is used for experimental analysis and numerical model verification in this paper. Investigated complex structure is sphere/cylinder junction on globe valve housing subjected to axial loading. The highest experimentally measured von Mises strain values around 0.15% are recorded on cylinder/sphere intersection. Von Mises strain values on cylindrical and spherical part are several times smaller than on intersection itself. It is important to emphasize that, to the authors’ best knowledge, this is the first paper showing experimental results of 3D full and strain field of geometrically complex structure (sphere/cylinder intersection) on the intersection itself on pressure equipment. It is proven that 3D Digital Image Correlation method is fast and versatile method for recording strain during loading of complex structures.","PeriodicalId":12913,"journal":{"name":"Hemijska Industrija","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemijska Industrija","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/HEMIND160516035M","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 13
Abstract
Complex structure experimental analysis has always been a huge challenge for researchers. Conventional experimental methods ( e.g ., strain gauges) give only limited data sets regarding measurement on critical areas with high geometrical discontinuities. A 3D Digital Image Correlation method is an optical method that overcomes the limitations of conventional methods and enables full-field displacement and strain measurement of geometrically complex structures. System Aramis, based on Digital Image Correlation method, is used for experimental analysis and numerical model verification in this paper. Investigated complex structure is sphere/cylinder junction on globe valve housing subjected to axial loading. The highest experimentally measured von Mises strain values around 0.15% are recorded on cylinder/sphere intersection. Von Mises strain values on cylindrical and spherical part are several times smaller than on intersection itself. It is important to emphasize that, to the authors’ best knowledge, this is the first paper showing experimental results of 3D full and strain field of geometrically complex structure (sphere/cylinder intersection) on the intersection itself on pressure equipment. It is proven that 3D Digital Image Correlation method is fast and versatile method for recording strain during loading of complex structures.
期刊介绍:
The Journal Hemijska industrija (abbreviation Hem. Ind.) is publishing papers in the field of Chemical Engineering (Transport phenomena; Process Modeling, Simulation and Optimization; Thermodynamics; Separation Processes; Reactor Engineering; Electrochemical Engineering; Petrochemical Engineering), Biochemical Engineering (Bioreactors; Protein Engineering; Kinetics of Bioprocesses), Engineering of Materials (Polymers; Metal materials; Non-metal materials; Biomaterials), Environmental Engineeringand Applied Chemistry. The journal is published bimonthly by the Association of Chemical Engineers of Serbia (a member of EFCE - European Federation of Chemical Engineering). In addition to professional articles of importance to industry, scientific research papers are published, not only from our country but from all over the world. It also contains topics such as business news, science and technology news, information on new apparatus and equipment, and articles on environmental protection.