{"title":"On inference and design under progressive type-I interval censoring scheme for inverse Gaussian lifetime model","authors":"Soumya Roy, B. Pradhan, Annesha Purakayastha","doi":"10.1108/ijqrm-07-2020-0222","DOIUrl":null,"url":null,"abstract":"PurposeThis article considers Inverse Gaussian distribution as the basic lifetime model for the test units. The unknown model parameters are estimated using the method of moments, the method of maximum likelihood and Bayesian methods. As part of maximum likelihood analysis, this article employs an expectation-maximization algorithm to simplify numerical computation. Subsequently, Bayesian estimates are obtained using the Metropolis–Hastings algorithm. This article then presents the design of optimal censoring schemes using a design criterion that deals with the precision of a particular system lifetime quantile. The optimal censoring schemes are obtained after taking into account budget constraints.Design/methodology/approachThis article first presents classical and Bayesian statistical inference for Progressive Type-I Interval censored data. Subsequently, this article considers the design of optimal Progressive Type-I Interval censoring schemes after incorporating budget constraints.FindingsA real dataset is analyzed to demonstrate the methods developed in this article. The adequacy of the lifetime model is ensured using a simulation-based goodness-of-fit test. Furthermore, the performance of various estimators is studied using a detailed simulation experiment. It is observed that the maximum likelihood estimator relatively outperforms the method of moment estimator. Furthermore, the posterior median fares better among Bayesian estimators even in the absence of any subjective information. Furthermore, it is observed that the budget constraints have real implications on the optimal design of censoring schemes.Originality/valueThe proposed methodology may be used for analyzing any Progressive Type-I Interval Censored data for any lifetime model. The methodology adopted to obtain the optimal censoring schemes may be particularly useful for reliability engineers in real-life applications.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-07-2020-0222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1
Abstract
PurposeThis article considers Inverse Gaussian distribution as the basic lifetime model for the test units. The unknown model parameters are estimated using the method of moments, the method of maximum likelihood and Bayesian methods. As part of maximum likelihood analysis, this article employs an expectation-maximization algorithm to simplify numerical computation. Subsequently, Bayesian estimates are obtained using the Metropolis–Hastings algorithm. This article then presents the design of optimal censoring schemes using a design criterion that deals with the precision of a particular system lifetime quantile. The optimal censoring schemes are obtained after taking into account budget constraints.Design/methodology/approachThis article first presents classical and Bayesian statistical inference for Progressive Type-I Interval censored data. Subsequently, this article considers the design of optimal Progressive Type-I Interval censoring schemes after incorporating budget constraints.FindingsA real dataset is analyzed to demonstrate the methods developed in this article. The adequacy of the lifetime model is ensured using a simulation-based goodness-of-fit test. Furthermore, the performance of various estimators is studied using a detailed simulation experiment. It is observed that the maximum likelihood estimator relatively outperforms the method of moment estimator. Furthermore, the posterior median fares better among Bayesian estimators even in the absence of any subjective information. Furthermore, it is observed that the budget constraints have real implications on the optimal design of censoring schemes.Originality/valueThe proposed methodology may be used for analyzing any Progressive Type-I Interval Censored data for any lifetime model. The methodology adopted to obtain the optimal censoring schemes may be particularly useful for reliability engineers in real-life applications.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining