In-Situ Online Detection Of Atmospheric Volatile Organic Compounds Based On Laser Induced Breakdown Spectroscopy: A Review

IF 3.4 2区 化学 Q1 SPECTROSCOPY
Yuzhu Liu
{"title":"In-Situ Online Detection Of Atmospheric Volatile Organic Compounds Based On Laser Induced Breakdown Spectroscopy: A Review","authors":"Yuzhu Liu","doi":"10.46770/as.2023.117","DOIUrl":null,"url":null,"abstract":": This review's main purpose is to provide a succinct overview of recent developments in the field of volatile organic compounds (VOCs) detection based on Laser-induced breakdown spectroscopy (LIBS). VOCs are important air pollutants, which have great harm to the environment and human body. It is of great significance to realize the rapid detection of VOCs in the atmospheric environment. LIBS is a novel atomic emission spectroscopy technology, which can achieve the rapid in-situ detection of substances and shows great potential in the online monitoring of atmospheric VOCs. To illustrate the development and difficulties of LIBS technology in atmospheric VOCs detection, some typical cases for various aspects are listed, including the detection of harmful elements in VOCs, source tracing of VOCs, the identification of isomers, and the detection of VOCs in living environment.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2023.117","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

: This review's main purpose is to provide a succinct overview of recent developments in the field of volatile organic compounds (VOCs) detection based on Laser-induced breakdown spectroscopy (LIBS). VOCs are important air pollutants, which have great harm to the environment and human body. It is of great significance to realize the rapid detection of VOCs in the atmospheric environment. LIBS is a novel atomic emission spectroscopy technology, which can achieve the rapid in-situ detection of substances and shows great potential in the online monitoring of atmospheric VOCs. To illustrate the development and difficulties of LIBS technology in atmospheric VOCs detection, some typical cases for various aspects are listed, including the detection of harmful elements in VOCs, source tracing of VOCs, the identification of isomers, and the detection of VOCs in living environment.
基于激光诱导击穿光谱的大气挥发性有机物原位在线检测研究进展
本文综述了基于激光诱导击穿光谱(LIBS)的挥发性有机化合物(VOCs)检测领域的最新进展。挥发性有机化合物是重要的大气污染物,对环境和人体危害极大。实现大气环境中VOCs的快速检测具有重要意义。LIBS是一种新型的原子发射光谱技术,可以实现对物质的快速原位检测,在大气VOCs的在线监测中显示出巨大的潜力。为了说明LIBS技术在大气VOCs检测中的发展和难点,列举了VOCs中有害元素的检测、VOCs源溯源、异构体的鉴定以及生活环境中VOCs的检测等方面的典型案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信