Roberto Contreras-Díaz, F. Carevic, V. Porcile, Mariana Arias-Aburto
{"title":"Development of SSR loci in Prosopis tamarugo Phillipi and assessment of their transferability to species of the Strombocarpa section","authors":"Roberto Contreras-Díaz, F. Carevic, V. Porcile, Mariana Arias-Aburto","doi":"10.5424/fs/2020292-16706","DOIUrl":null,"url":null,"abstract":"Aims of the study: Phreatophyte species of the Prosopis genus are very important to natural ecosystems in Africa, South America and Asia due to their uses as food and seed sources and in agroforestry. In this research, through next-generation sequencing, we sought to search for and develop SSR markers in Prosopis tamarugo, in addition to assessing their transferability to other species in the Strombocarpa section.Area of study: The study was carried out in species of the Strombocarpa section collected in the “Pampa del Tamarugal”, located in the Atacama Desert (Chile); which is considered the driest and oldest desert on Earth.Materials and methods: The next-generation sequencing for the development of simple sequence repeat (SSR) or microsatellite loci for genetic research in P. tamarugo and their transferability in Prosopis burkartii and Prosopis strombulifera was used.Main results: A total of ~90.000 microsatellite loci in P. tamarugo were found, and a set of 43 primer pairs was used for validating SSR locus amplification. We found a large difference in the percentage of amplified SSR markers between species of the Strombocarpa and Algarobia sections.Research highlights: The present study provides for the first time 24 polymorphic SSR markers for species in the Strombocarpa section, which could be a useful tool for estimating genetic structure, developing breeding programs, quantifying genetic diversity and performing population studies.Keywords: Strombocarpa section; Prosopis tamarugo; Atacama Desert; microsatellites; NGS.","PeriodicalId":50434,"journal":{"name":"Forest Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Systems","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5424/fs/2020292-16706","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 3
Abstract
Aims of the study: Phreatophyte species of the Prosopis genus are very important to natural ecosystems in Africa, South America and Asia due to their uses as food and seed sources and in agroforestry. In this research, through next-generation sequencing, we sought to search for and develop SSR markers in Prosopis tamarugo, in addition to assessing their transferability to other species in the Strombocarpa section.Area of study: The study was carried out in species of the Strombocarpa section collected in the “Pampa del Tamarugal”, located in the Atacama Desert (Chile); which is considered the driest and oldest desert on Earth.Materials and methods: The next-generation sequencing for the development of simple sequence repeat (SSR) or microsatellite loci for genetic research in P. tamarugo and their transferability in Prosopis burkartii and Prosopis strombulifera was used.Main results: A total of ~90.000 microsatellite loci in P. tamarugo were found, and a set of 43 primer pairs was used for validating SSR locus amplification. We found a large difference in the percentage of amplified SSR markers between species of the Strombocarpa and Algarobia sections.Research highlights: The present study provides for the first time 24 polymorphic SSR markers for species in the Strombocarpa section, which could be a useful tool for estimating genetic structure, developing breeding programs, quantifying genetic diversity and performing population studies.Keywords: Strombocarpa section; Prosopis tamarugo; Atacama Desert; microsatellites; NGS.
期刊介绍:
Forest Systems is an international peer-reviewed journal. The main aim of Forest Systems is to integrate multidisciplinary research with forest management in complex systems with different social and ecological background