Attractors of 2D Navier–Stokes system of equations in a locally periodic porous medium

IF 0.7 Q2 MATHEMATICS
K. Bekmaganbetov, G. Chechkin, A. Toleubay
{"title":"Attractors of 2D Navier–Stokes system of equations in a locally periodic porous medium","authors":"K. Bekmaganbetov, G. Chechkin, A. Toleubay","doi":"10.31489/2022m3/35-50","DOIUrl":null,"url":null,"abstract":"This article deals with two-dimensional Navier–Stokes system of equations with rapidly oscillating term in the equations and boundary conditions. Studying the problem in a perforated domain, the authors set homogeneous Dirichlet condition on the outer boundary and the Fourier (Robin) condition on the boundary of the cavities. Under such assumptions it is proved that the trajectory attractors of this system converge in some weak topology to trajectory attractors of the homogenized Navier–Stokes system of equations with an additional potential and nontrivial right hand side in the domain without pores. For this aim, the approaches from the works of A.V. Babin, V.V. Chepyzhov, J.-L. Lions, R. Temam, M.I. Vishik concerning trajectory attractors of evolution equations and homogenization methods appeared at the end of the XX-th century are used. First, we apply the asymptotic methods for formal construction of asymptotics, then, we verify the leading terms of asymptotic series by means of the methods of functional analysis and integral estimates. Defining the appropriate axillary functional spaces with weak topology, we derive the limit (homogenized) system of equations and prove the existence of trajectory attractors for this system. Lastly, we formulate the main theorem and prove it through axillary lemmas.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m3/35-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with two-dimensional Navier–Stokes system of equations with rapidly oscillating term in the equations and boundary conditions. Studying the problem in a perforated domain, the authors set homogeneous Dirichlet condition on the outer boundary and the Fourier (Robin) condition on the boundary of the cavities. Under such assumptions it is proved that the trajectory attractors of this system converge in some weak topology to trajectory attractors of the homogenized Navier–Stokes system of equations with an additional potential and nontrivial right hand side in the domain without pores. For this aim, the approaches from the works of A.V. Babin, V.V. Chepyzhov, J.-L. Lions, R. Temam, M.I. Vishik concerning trajectory attractors of evolution equations and homogenization methods appeared at the end of the XX-th century are used. First, we apply the asymptotic methods for formal construction of asymptotics, then, we verify the leading terms of asymptotic series by means of the methods of functional analysis and integral estimates. Defining the appropriate axillary functional spaces with weak topology, we derive the limit (homogenized) system of equations and prove the existence of trajectory attractors for this system. Lastly, we formulate the main theorem and prove it through axillary lemmas.
局部周期多孔介质中二维Navier-Stokes方程组的吸引子
本文讨论了具有快速振荡项的二维Navier-Stokes方程组和边界条件。在研究多孔域中的问题时,作者在腔的外边界上设置齐次Dirichlet条件,在腔的边界上设置Fourier(Robin)条件。在这样的假设下,证明了该系统的轨迹吸引子在一些弱拓扑中收敛于具有附加势的齐次Navier-Stokes方程组的轨迹吸引子,并且在没有孔隙的域中具有非平凡的右手边。为此,我们采用了A.V.Babin、V.V.Chepyzhov、J.-L.L.Lions、R.Team、M.I.Vishik等人关于二十世纪末出现的演化方程轨道吸引子和均匀化方法的方法。首先,我们将渐近方法应用于渐近性的形式化构造,然后,我们用泛函分析和积分估计的方法来验证渐近级数的前导项。定义具有弱拓扑的适当的腋函数空间,我们导出了极限(齐化)方程组,并证明了该方程组的轨迹吸引子的存在性。最后,我们建立了主定理,并用腋引理证明了它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信