The Hybrid Numbers of Padovan and Some Identities

IF 0.4 Q4 MATHEMATICS
M. Mangueira, R. Vieira, F. R. Alves, P. Catarino
{"title":"The Hybrid Numbers of Padovan and Some Identities","authors":"M. Mangueira, R. Vieira, F. R. Alves, P. Catarino","doi":"10.2478/amsil-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we will define Padovan’s hybrid numbers, based on the new noncommutative numbering system studied by Özdemir ([7]). Such a system that is a set involving complex, hyperbolic and dual numbers. In addition, Padovan’s hybrid numbers are created by combining this set, satisfying the relation ih = −hi = ɛ + i. Given this, some properties and identities are shown for these numbers, such as Binet’s formula, generating matrix, characteristic equation, norm, and generating function. In addition, these numbers are extended to the integer field and some identities are made.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"256 - 267"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract In this article, we will define Padovan’s hybrid numbers, based on the new noncommutative numbering system studied by Özdemir ([7]). Such a system that is a set involving complex, hyperbolic and dual numbers. In addition, Padovan’s hybrid numbers are created by combining this set, satisfying the relation ih = −hi = ɛ + i. Given this, some properties and identities are shown for these numbers, such as Binet’s formula, generating matrix, characteristic equation, norm, and generating function. In addition, these numbers are extended to the integer field and some identities are made.
帕多万的杂交数和一些恒等式
摘要在本文中,我们将在Özdemir([7])研究的新的非交换编号系统的基础上定义Padovan的混合数。这样一个系统,它是一个包含复数、双曲数和对偶数的集合。此外,Padovan的混合数是由这个集合组合而成的,满足关系式ih=−hi=Ş+i。在这种情况下,给出了这些数的一些性质和恒等式,如Binet公式、生成矩阵、特征方程、范数和生成函数。此外,将这些数字扩展到整数域,并建立了一些恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信