CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK

Q3 Economics, Econometrics and Finance
Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti
{"title":"CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK","authors":"Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti","doi":"10.35784/acs-2023-19","DOIUrl":null,"url":null,"abstract":"In our aging culture, neurodegenerative disorders like Parkinson's disease (PD) are among the most serious health issues. It is a neurological condition that has social and economic effects on individuals. It happens because the brain's dopamine-producing cells are unable to produce enough of the chemical to support the body's motor functions. The main symptoms of this illness are eyesight, excretion activity, speech, and mobility issues, followed by depression, anxiety, sleep issues, and panic attacks. The main aim of this research is to develop a workable clinical decision-making framework that aids the physician in diagnosing patients with PD influence. In this research, we proposed a technique to classify Parkinson’s disease by MRI brain images. Initially, normalize the input data using the min-max normalization method and then remove noise from input images using a median filter. Then utilizing the Binary Dragonfly Algorithm to select the features. Furthermore, to segment the diseased part from MRI brain images using the technique Dense-UNet. Then, classify the disease as if it’s Parkinson’s disease or health control using the Deep Residual Convolutional Neural Network (DRCNN) technique along with Enhanced Whale Optimization Algorithm (EWOA) to get better classification accuracy. Here, we use the public Parkinson’s Progression Marker Initiative (PPMI) dataset for Parkinson’s MRI images. The accuracy, sensitivity, specificity, and precision metrics will be utilized with manually gathered data to assess the efficacy of the proposed methodology.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2023-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

In our aging culture, neurodegenerative disorders like Parkinson's disease (PD) are among the most serious health issues. It is a neurological condition that has social and economic effects on individuals. It happens because the brain's dopamine-producing cells are unable to produce enough of the chemical to support the body's motor functions. The main symptoms of this illness are eyesight, excretion activity, speech, and mobility issues, followed by depression, anxiety, sleep issues, and panic attacks. The main aim of this research is to develop a workable clinical decision-making framework that aids the physician in diagnosing patients with PD influence. In this research, we proposed a technique to classify Parkinson’s disease by MRI brain images. Initially, normalize the input data using the min-max normalization method and then remove noise from input images using a median filter. Then utilizing the Binary Dragonfly Algorithm to select the features. Furthermore, to segment the diseased part from MRI brain images using the technique Dense-UNet. Then, classify the disease as if it’s Parkinson’s disease or health control using the Deep Residual Convolutional Neural Network (DRCNN) technique along with Enhanced Whale Optimization Algorithm (EWOA) to get better classification accuracy. Here, we use the public Parkinson’s Progression Marker Initiative (PPMI) dataset for Parkinson’s MRI images. The accuracy, sensitivity, specificity, and precision metrics will be utilized with manually gathered data to assess the efficacy of the proposed methodology.
脑MRI图像中帕金森病的深度残差卷积神经网络分类
在我们的老龄化文化中,帕金森病(PD)等神经退行性疾病是最严重的健康问题之一。它是一种神经系统疾病,对个人有社会和经济影响。之所以会发生这种情况,是因为大脑中产生多巴胺的细胞无法产生足够的化学物质来支持身体的运动功能。这种疾病的主要症状是视力、排泄活动、言语和行动能力问题,其次是抑郁、焦虑、睡眠问题和恐慌发作。本研究的主要目的是开发一个可行的临床决策框架,帮助医生诊断PD影响患者。在这项研究中,我们提出了一种通过MRI脑图像对帕金森病进行分类的技术。最初,使用最小-最大归一化方法对输入数据进行归一化,然后使用中值滤波器从输入图像中去除噪声。然后利用二进制蜻蜓算法来选择特征。此外,使用Dense UNet技术从MRI脑图像中分割病变部分。然后,使用深度残差卷积神经网络(DRCNN)技术和增强鲸鱼优化算法(EWOA)将疾病分类为帕金森病或健康控制,以获得更好的分类精度。在这里,我们使用公共帕金森氏进展标记倡议(PPMI)数据集来获取帕金森氏MRI图像。准确性、敏感性、特异性和精密度指标将与手动收集的数据一起使用,以评估拟议方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信