Bayesian vine copulas for modelling dependence in data breach losses

IF 1.5 Q3 BUSINESS, FINANCE
Jia Liu, Jackie Li, K. Daly
{"title":"Bayesian vine copulas for modelling dependence in data breach losses","authors":"Jia Liu, Jackie Li, K. Daly","doi":"10.1017/S174849952200001X","DOIUrl":null,"url":null,"abstract":"Abstract Potentialdata breach losses represent a significant part of operational risk and can be a serious concern for risk managers and insurers. In this paper, we employ the vine copulas under a Bayesian framework to co-model incidences from different data breach types. A full Bayesian approach can allow one to select both the copulas and margins and estimate their parameters in a coherent fashion. In particular, it can incorporate process, parameter, and model uncertainties, and this is very important for applications in risk management under current regulations. We also conduct a series of sensitivity tests on the Bayesian modelling results. Using two public data sets of data breach losses, we find that the overall dependency structure and tail dependence vary significantly between different types of data breaches. The optimally selected vine structure and pairwise copulas suggest more conservative value-at-risk estimates when compared to the other suboptimal copula models.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S174849952200001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Potentialdata breach losses represent a significant part of operational risk and can be a serious concern for risk managers and insurers. In this paper, we employ the vine copulas under a Bayesian framework to co-model incidences from different data breach types. A full Bayesian approach can allow one to select both the copulas and margins and estimate their parameters in a coherent fashion. In particular, it can incorporate process, parameter, and model uncertainties, and this is very important for applications in risk management under current regulations. We also conduct a series of sensitivity tests on the Bayesian modelling results. Using two public data sets of data breach losses, we find that the overall dependency structure and tail dependence vary significantly between different types of data breaches. The optimally selected vine structure and pairwise copulas suggest more conservative value-at-risk estimates when compared to the other suboptimal copula models.
数据泄露损失依赖性建模的贝叶斯藤copula
摘要潜在的数据泄露损失是运营风险的重要组成部分,可能是风险经理和保险公司严重关注的问题。在本文中,我们在贝叶斯框架下使用vine Copula来对不同数据泄露类型的事件进行联合建模。完整的贝叶斯方法可以允许选择copula和margin,并以连贯的方式估计它们的参数。特别是,它可以包含过程、参数和模型的不确定性,这对于当前法规下的风险管理应用非常重要。我们还对贝叶斯建模结果进行了一系列敏感性测试。使用两个数据泄露损失的公共数据集,我们发现不同类型的数据泄露的整体依赖结构和尾部依赖性差异很大。与其他次优copula模型相比,最优选择的葡萄树结构和成对copula表明风险估计值更保守。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信