{"title":"ALGORITMO DE BOOTH-KARATSUBA EN OPERACIONES ADITIVAS","authors":"J. A. Pérez","doi":"10.17993/3CTIC.0.00.30-59","DOIUrl":null,"url":null,"abstract":"espanolEl algoritmo dado por Andrew Donald Booth en 1950 (Booth, 1951) para la multiplicacion y el algoritmo dado por Anatoly Alexeevitch Karatsuba en 1960 (Karatsuba, 1962) a su vez tambien para la multiplicacion demuestran tener mucho mas en comun de lo que sus autores describieron al definirlos (Ayuso, 2006-2018). Tal relacion se estrecha al ser generalizados llegando al punto incluso de acabar encontrandose. De ahi que en el presente documento se proponga una solucion hardware para adiciones y sustracciones entre enteros basada en los citados algoritmos, evidenciando la convergencia insoslayable entre los citados conceptos. EnglishThe algorithm given by Andrew Donald Booth in 1950 (Booth, 1951) for multiplication and the algorithm given by Anatoly Alexeevitch Karatsuba in 1960 (Karatsuba, 1962) in turn for multiplication prove to have much more in common than what its authors described when defining them (Ayuso, 2006-2018). Such a relationship is narrowed to be widespread reaching the point of ending up meeting. Hence, in this document a hardware solution is proposed for additions and subtractions between integers based on the aforementioned algorithms, demonstrating the evident convergence between the aforementioned concepts.","PeriodicalId":40869,"journal":{"name":"3C Tic","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3CTIC.0.00.30-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
espanolEl algoritmo dado por Andrew Donald Booth en 1950 (Booth, 1951) para la multiplicacion y el algoritmo dado por Anatoly Alexeevitch Karatsuba en 1960 (Karatsuba, 1962) a su vez tambien para la multiplicacion demuestran tener mucho mas en comun de lo que sus autores describieron al definirlos (Ayuso, 2006-2018). Tal relacion se estrecha al ser generalizados llegando al punto incluso de acabar encontrandose. De ahi que en el presente documento se proponga una solucion hardware para adiciones y sustracciones entre enteros basada en los citados algoritmos, evidenciando la convergencia insoslayable entre los citados conceptos. EnglishThe algorithm given by Andrew Donald Booth in 1950 (Booth, 1951) for multiplication and the algorithm given by Anatoly Alexeevitch Karatsuba in 1960 (Karatsuba, 1962) in turn for multiplication prove to have much more in common than what its authors described when defining them (Ayuso, 2006-2018). Such a relationship is narrowed to be widespread reaching the point of ending up meeting. Hence, in this document a hardware solution is proposed for additions and subtractions between integers based on the aforementioned algorithms, demonstrating the evident convergence between the aforementioned concepts.
espanolEl算法了1950年安德鲁·唐纳德Booth (Booth, 1951年)为multiplicacion算法得到了Anatoly Alexeevitch Karatsuba 1960年(Karatsuba, 1962)反过来也是对multiplicacion表明有更多的共同之处,其作者叙述下定义(2006-2018 11时25分)。这种关系随着普遍化而变得更加紧密,甚至达到了相遇的程度。因此,本文提出了一种基于上述算法的整数加减法硬件解决方案,证明了这些概念之间不可避免的收敛性。Andrew Donald Booth在1950年(Booth, 1951)为乘法给出的算法和Anatoly Alexeevitch Karatsuba在1960年(Karatsuba, 1962)为乘法给出的算法证明比其作者在定义它们时所描述的更常见(Ayuso, 2006-2018)。如a relationship is narrowed to be人才拓展the point of: up meeting。因此,本文提出了一种基于先验算法的整数加减法的硬件解决方案,证明了先验概念之间明显的收敛性。