ACCURACY OF NEURAL NETWORK MODEL IN PREDICTING OUTCOME OF COVID 19 USING DEEP LEARNING APPROACH

IF 0.1 Q4 STATISTICS & PROBABILITY
K. Kuntoro
{"title":"ACCURACY OF NEURAL NETWORK MODEL IN PREDICTING OUTCOME OF COVID 19 USING DEEP LEARNING APPROACH","authors":"K. Kuntoro","doi":"10.17654/0973514322008","DOIUrl":null,"url":null,"abstract":"COVID-19 as the disease of concern motivates various scientists to investigate it in various perspectives. In statistical perspective, a number of statistical models are used to predict the outcome of COVID-19 cases given a number of risk factors. Accuracy of a statistical model in predicting the outcome is important to be determined. A part of supervised machine learning called deep learning is used to predict the outcome of COVID-19 given five predictors, new cases, age >= 65 years, prevalence of diabetes mellitus, female smoker, and male smoker. Big data of COVID-19 is downloaded from the website. A thousand data sets have been analyzed by neural network algorithm using library Keras.","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JP Journal of Biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0973514322008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19 as the disease of concern motivates various scientists to investigate it in various perspectives. In statistical perspective, a number of statistical models are used to predict the outcome of COVID-19 cases given a number of risk factors. Accuracy of a statistical model in predicting the outcome is important to be determined. A part of supervised machine learning called deep learning is used to predict the outcome of COVID-19 given five predictors, new cases, age >= 65 years, prevalence of diabetes mellitus, female smoker, and male smoker. Big data of COVID-19 is downloaded from the website. A thousand data sets have been analyzed by neural network algorithm using library Keras.
基于深度学习方法的神经网络模型预测covid - 19结果的准确性
新冠肺炎作为一种令人关注的疾病,促使不同的科学家从不同的角度对其进行研究。从统计学角度来看,考虑到许多风险因素,使用了许多统计模型来预测新冠肺炎病例的结果。统计模型在预测结果方面的准确性有待确定。被称为深度学习的监督机器学习的一部分用于预测新冠肺炎的结果,给出了五个预测因素,即新病例、年龄>=65岁、糖尿病患病率、女性吸烟者和男性吸烟者。新冠肺炎大数据可从网站下载。使用库Keras通过神经网络算法对1000个数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JP Journal of Biostatistics
JP Journal of Biostatistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信