On the Borel Classes of Set-Valued Maps of Two Variables

IF 0.4 Q4 MATHEMATICS
L. Holá, G. Kwiecińska
{"title":"On the Borel Classes of Set-Valued Maps of Two Variables","authors":"L. Holá, G. Kwiecińska","doi":"10.2478/amsil-2020-0018","DOIUrl":null,"url":null,"abstract":"Abstract Using the Borel classification of set-valued maps, we present here some new results on set-valued maps which are similar to some of the well known theorems on functions due to Lebesgue and Kuratowski. We consider set-valued maps of two variables in perfectly normal topological spaces. It was proved in [11] that a set-valued map lower semicontinuous (i.e. of lower Borel class 0) in the first and upper semicontinuous (i.e. of upper Borel class 0) in the second variable is of upper Borel class 1 and also (with stronger assumptions) of lower Borel class 1. This result cannot be generalized into higher Borel classes. In this paper we show that a set-valued map of the upper (resp. lower) Borel class α in the first and lower semicontinuous and upper quasicontinuous (upper semicontinuous and lower quasicontinuous) in the second variable is of the lower (resp. upper) Borel class α + 1. Also other cases are considered.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"81 - 95"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Using the Borel classification of set-valued maps, we present here some new results on set-valued maps which are similar to some of the well known theorems on functions due to Lebesgue and Kuratowski. We consider set-valued maps of two variables in perfectly normal topological spaces. It was proved in [11] that a set-valued map lower semicontinuous (i.e. of lower Borel class 0) in the first and upper semicontinuous (i.e. of upper Borel class 0) in the second variable is of upper Borel class 1 and also (with stronger assumptions) of lower Borel class 1. This result cannot be generalized into higher Borel classes. In this paper we show that a set-valued map of the upper (resp. lower) Borel class α in the first and lower semicontinuous and upper quasicontinuous (upper semicontinuous and lower quasicontinuous) in the second variable is of the lower (resp. upper) Borel class α + 1. Also other cases are considered.
关于二元集值映射的Borel类
摘要利用集值映射的Borel分类,本文给出了集值映射的一些新结果,这些结果类似于由Lebesgue和Kuratowski引起的关于函数的一些著名定理。考虑完全正规拓扑空间中两个变量的集值映射。在[11]中证明了第1变量上半连续(即下Borel类0)和第2变量上半连续(即上Borel类0)的集值映射是上Borel类1的集值映射,也是下Borel类1的集值映射(在更强的假设下)。这个结果不能推广到更高的Borel类。在本文中,我们证明了上界的一个集值映射。Borel类α在第一、下半连续和上准连续(上半连续和下准连续)中的第二变量是下(p < 0.05)。(上)Borel α + 1级。还考虑了其他情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信