Aerodynamic Performance of an Annular Combustion Chamber Cooling with Swirler Design

Q3 Engineering
C. Dinh, X. Le, T. Hoang, Q. Pham
{"title":"Aerodynamic Performance of an Annular Combustion Chamber Cooling with Swirler Design","authors":"C. Dinh, X. Le, T. Hoang, Q. Pham","doi":"10.5293/IJFMS.2021.14.1.001","DOIUrl":null,"url":null,"abstract":"Gas turbines play a crucial role in the aviation industry as they are primary sources of power for most aircraft. The combustion chamber is one of the three essential part of jet engines, together with compressor and turbine. Energy is generated when fuel is burned in the combustor. In the primary zone, the recirculation flow is of great importance to aerodynamic performance. Swirlers, fitted in the dome around the fuel injector, can alter the behavior of the recirculation flow and thus, impact combustion performance. The vortex behind a swirler can be easily controlled by changing the swirl angle. In addition, changing the vortex angle leads to a difference in mixing between fuel and air. This paper investigates the effects of swirler design, based on the swirl angle, on aerodynamic performance of an annular combustion chamber in cooling condition using three-dimensional Reynolds-averaged Navier-Stokes equations with the SST turbulence model.","PeriodicalId":38576,"journal":{"name":"International Journal of Fluid Machinery and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Machinery and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5293/IJFMS.2021.14.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Gas turbines play a crucial role in the aviation industry as they are primary sources of power for most aircraft. The combustion chamber is one of the three essential part of jet engines, together with compressor and turbine. Energy is generated when fuel is burned in the combustor. In the primary zone, the recirculation flow is of great importance to aerodynamic performance. Swirlers, fitted in the dome around the fuel injector, can alter the behavior of the recirculation flow and thus, impact combustion performance. The vortex behind a swirler can be easily controlled by changing the swirl angle. In addition, changing the vortex angle leads to a difference in mixing between fuel and air. This paper investigates the effects of swirler design, based on the swirl angle, on aerodynamic performance of an annular combustion chamber in cooling condition using three-dimensional Reynolds-averaged Navier-Stokes equations with the SST turbulence model.
旋流器设计环形燃烧室冷却的气动性能
燃气轮机在航空工业中起着至关重要的作用,因为它们是大多数飞机的主要动力来源。燃烧室与压气机和涡轮一起是喷气发动机的三个基本部件之一。当燃料在燃烧器中燃烧时产生能量。在主区,再循环流量对气动性能有重要影响。旋流器安装在喷油器周围的圆顶上,可以改变再循环流动的行为,从而影响燃烧性能。旋流器后的旋涡可以通过改变旋流角度来控制。此外,涡角的改变会导致燃料和空气混合的不同。本文利用三维reynolds -average Navier-Stokes方程和SST湍流模型,研究了基于旋流角的旋流器设计对冷却条件下环形燃烧室气动性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fluid Machinery and Systems
International Journal of Fluid Machinery and Systems Engineering-Industrial and Manufacturing Engineering
CiteScore
1.80
自引率
0.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信