Data Cloning Estimation and Identification of a Medium-Scale DSGE Model

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-12-24 DOI:10.3390/stats6010002
Pedro Chaim, M. Laurini
{"title":"Data Cloning Estimation and Identification of a Medium-Scale DSGE Model","authors":"Pedro Chaim, M. Laurini","doi":"10.3390/stats6010002","DOIUrl":null,"url":null,"abstract":"We apply the data cloning method to estimate a medium-scale dynamic stochastic general equilibrium model. The data cloning algorithm is a numerical method that employs replicas of the original sample to approximate the maximum likelihood estimator as the limit of Bayesian simulation-based estimators. We also analyze the identification properties of the model. We measure the individual identification strength of each parameter by observing the posterior volatility of data cloning estimates and access the identification problem globally through the maximum eigenvalue of the posterior data cloning covariance matrix. Our results corroborate existing evidence suggesting that the DSGE model of Smeets and Wouters is only poorly identified. The model displays weak global identification properties, and many of its parameters seem locally ill-identified.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

We apply the data cloning method to estimate a medium-scale dynamic stochastic general equilibrium model. The data cloning algorithm is a numerical method that employs replicas of the original sample to approximate the maximum likelihood estimator as the limit of Bayesian simulation-based estimators. We also analyze the identification properties of the model. We measure the individual identification strength of each parameter by observing the posterior volatility of data cloning estimates and access the identification problem globally through the maximum eigenvalue of the posterior data cloning covariance matrix. Our results corroborate existing evidence suggesting that the DSGE model of Smeets and Wouters is only poorly identified. The model displays weak global identification properties, and many of its parameters seem locally ill-identified.
一个中尺度DSGE模型的数据克隆估计与识别
我们应用数据克隆方法来估计一个中等规模的动态随机一般均衡模型。数据克隆算法是一种数值方法,它使用原始样本的副本来近似最大似然估计量,作为基于贝叶斯模拟的估计量的极限。我们还分析了模型的识别特性。我们通过观察数据克隆估计的后验波动性来测量每个参数的个体识别强度,并通过后验数据克隆协方差矩阵的最大特征值全局访问识别问题。我们的研究结果证实了现有的证据,即Smeets和Wouters的DSGE模型只是很难识别。该模型显示出较弱的全局识别特性,并且它的许多参数似乎是局部错误识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信