{"title":"Polyhedral approximation of metric surfaces and applications to uniformization","authors":"Dimitrios Ntalampekos, Matthew Romney","doi":"10.1215/00127094-2022-0061","DOIUrl":null,"url":null,"abstract":"We prove that any length metric space homeomorphic to a 2-manifold with boundary, also called a length surface, is the Gromov-Hausdorff limit of polyhedral surfaces with controlled geometry. As an application, using the classical uniformization theorem for Riemann surfaces and a limiting argument, we establish a general\"one-sided\"quasiconformal uniformization theorem for length surfaces with locally finite Hausdorff 2-measure. Our approach yields a new proof of the Bonk-Kleiner theorem characterizing Ahlfors 2-regular quasispheres.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 14
Abstract
We prove that any length metric space homeomorphic to a 2-manifold with boundary, also called a length surface, is the Gromov-Hausdorff limit of polyhedral surfaces with controlled geometry. As an application, using the classical uniformization theorem for Riemann surfaces and a limiting argument, we establish a general"one-sided"quasiconformal uniformization theorem for length surfaces with locally finite Hausdorff 2-measure. Our approach yields a new proof of the Bonk-Kleiner theorem characterizing Ahlfors 2-regular quasispheres.