Polyhedral approximation of metric surfaces and applications to uniformization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dimitrios Ntalampekos, Matthew Romney
{"title":"Polyhedral approximation of metric surfaces and applications to uniformization","authors":"Dimitrios Ntalampekos, Matthew Romney","doi":"10.1215/00127094-2022-0061","DOIUrl":null,"url":null,"abstract":"We prove that any length metric space homeomorphic to a 2-manifold with boundary, also called a length surface, is the Gromov-Hausdorff limit of polyhedral surfaces with controlled geometry. As an application, using the classical uniformization theorem for Riemann surfaces and a limiting argument, we establish a general\"one-sided\"quasiconformal uniformization theorem for length surfaces with locally finite Hausdorff 2-measure. Our approach yields a new proof of the Bonk-Kleiner theorem characterizing Ahlfors 2-regular quasispheres.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 14

Abstract

We prove that any length metric space homeomorphic to a 2-manifold with boundary, also called a length surface, is the Gromov-Hausdorff limit of polyhedral surfaces with controlled geometry. As an application, using the classical uniformization theorem for Riemann surfaces and a limiting argument, we establish a general"one-sided"quasiconformal uniformization theorem for length surfaces with locally finite Hausdorff 2-measure. Our approach yields a new proof of the Bonk-Kleiner theorem characterizing Ahlfors 2-regular quasispheres.
度量曲面的多面体逼近及其在均匀化中的应用
我们证明了任何同胚于具有边界的2-流形的长度度量空间,也称为长度曲面,都是具有受控几何的多面体曲面的Gromov-Hausdorff极限。作为一个应用,利用黎曼曲面的经典一致化定理和一个限制性自变量,我们建立了具有局部有限Hausdorff 2-测度的长度曲面的一般“单侧”拟共形一致化定理。我们的方法给出了刻画Ahlfors2-正则拟球的Bonk-Kleiner定理的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信