Jacobson’s Lemma in the ring of quaternionic linear operators

Q3 Mathematics
E. Benabdi, M. Barraa
{"title":"Jacobson’s Lemma in the ring of quaternionic linear operators","authors":"E. Benabdi, M. Barraa","doi":"10.2478/mjpaa-2021-0031","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we study the Jacobson’s Lemma in the unital ring of all bounded right linear operators ℬR(X) acting on a two-sided quaternionic Banach space X. In particular, let A, B ∈ ℬR(X) and let q ∈ ℍ \\ {0}, we prove that w(AB) \\ {0} = w(BA) \\ {0} where w belongs to the spherical spectrum, the spherical approximate point spectrum, the right spherical spectrum, the left spherical spectrum, the spherical point spectrum, the spherical residual spectrum and the spherical continuous spectrum. We also prove that the range of (AB)2 − 2Re(q)AB + |q|2I is closed if and only if (BA)2 − 2Re(q)BA + |q|2I has closed range. Finally, we show that (AB)2 − 2Re(q)AB + |q|2I is Drazin invertible if and only if (BA)2 − 2Re(q)BA + |q|2I is.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"461 - 469"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the present paper, we study the Jacobson’s Lemma in the unital ring of all bounded right linear operators ℬR(X) acting on a two-sided quaternionic Banach space X. In particular, let A, B ∈ ℬR(X) and let q ∈ ℍ \ {0}, we prove that w(AB) \ {0} = w(BA) \ {0} where w belongs to the spherical spectrum, the spherical approximate point spectrum, the right spherical spectrum, the left spherical spectrum, the spherical point spectrum, the spherical residual spectrum and the spherical continuous spectrum. We also prove that the range of (AB)2 − 2Re(q)AB + |q|2I is closed if and only if (BA)2 − 2Re(q)BA + |q|2I has closed range. Finally, we show that (AB)2 − 2Re(q)AB + |q|2I is Drazin invertible if and only if (BA)2 − 2Re(q)BA + |q|2I is.
四元数线性算子环中的Jacobson引理
摘要本文研究了所有有界右线性算子的酉环中的Jacobson引理ℬR(X)作用于双侧四元数Banach空间X。特别地,设a,B∈ℬR(X)和设q∈ℍ \ {0},我们证明了w(AB)=w(BA),其中w属于球面谱、球面近似点谱、右球面谱、左球面谱、球点谱、球面残差谱和球面连续谱。我们还证明了(AB)2−2Re(q)AB+|q|2I的范围是闭的当且仅当(BA)2−2Re(q)BA+|q|2 I具有闭的范围。最后,我们证明了(AB)2−2Re(q)AB+|q|2I是Drazin可逆的当且仅当(BA)2−2Re(q)BA+|q|2 I是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信