{"title":"SN-Donor Methylthioanilines and Copper(II) Complexes: Synthesis, Spectral Properties, and In Vitro Antimicrobial Activity","authors":"T. E. Olalekan, A. Ogunlaja, G. M. Watkins","doi":"10.1155/2019/9203435","DOIUrl":null,"url":null,"abstract":"Methylthioanilines, a series of sulfur-nitrogen donor ligands substituted with OCH3, CH3, Cl, and Br, and their copper(II) complexes have been synthesized and characterized by 1H and 13C NMR, elemental analysis, FTIR, UV-Vis and EPR spectra, molar conductance, and magnetic susceptibility measurements. The NMR spectra of the ligands revealed that the para/ortho protons and para carbon were sensitive to the electronic effect of substituents. The CHNS analysis presented CuLCl2 (L = OCH3, CH3, Cl) and CuL2Cl2 (L = Br) stoichiometries for the copper complexes. FTIR spectra showed that the bidentate ligands were coordinated to the copper ion through their nitrogen and sulfur atoms. The electronic spectra have suggested square planar and octahedral geometries for these complexes. The EPR spectra demonstrated that the solid state copper(II) complexes possess dx2–y2 orbital ground state and g∥ > g⊥ > 2.0023 in a tetragonal environment. The compounds were evaluated for in vitro antimicrobial activity against S. aureus, B. subtilis, E. coli, and C. albicans. The copper complexes showed higher activity than the parent ligands against S. aureus and B. subtilis; the electron-donating OCH3 and CH3 derivatives were more active than the withdrawing Br- and Cl-substituted compounds.","PeriodicalId":12816,"journal":{"name":"Heteroatom Chemistry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9203435","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heteroatom Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2019/9203435","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Methylthioanilines, a series of sulfur-nitrogen donor ligands substituted with OCH3, CH3, Cl, and Br, and their copper(II) complexes have been synthesized and characterized by 1H and 13C NMR, elemental analysis, FTIR, UV-Vis and EPR spectra, molar conductance, and magnetic susceptibility measurements. The NMR spectra of the ligands revealed that the para/ortho protons and para carbon were sensitive to the electronic effect of substituents. The CHNS analysis presented CuLCl2 (L = OCH3, CH3, Cl) and CuL2Cl2 (L = Br) stoichiometries for the copper complexes. FTIR spectra showed that the bidentate ligands were coordinated to the copper ion through their nitrogen and sulfur atoms. The electronic spectra have suggested square planar and octahedral geometries for these complexes. The EPR spectra demonstrated that the solid state copper(II) complexes possess dx2–y2 orbital ground state and g∥ > g⊥ > 2.0023 in a tetragonal environment. The compounds were evaluated for in vitro antimicrobial activity against S. aureus, B. subtilis, E. coli, and C. albicans. The copper complexes showed higher activity than the parent ligands against S. aureus and B. subtilis; the electron-donating OCH3 and CH3 derivatives were more active than the withdrawing Br- and Cl-substituted compounds.
期刊介绍:
Heteroatom Chemistry brings together a broad, interdisciplinary group of chemists who work with compounds containing main-group elements of groups 13 through 17 of the Periodic Table, and certain other related elements. The fundamental reactivity under investigation should, in all cases, be concentrated about the heteroatoms. It does not matter whether the compounds being studied are acyclic or cyclic; saturated or unsaturated; monomeric, polymeric or solid state in nature; inorganic, organic, or naturally occurring, so long as the heteroatom is playing an essential role. Computational, experimental, and combined studies are equally welcome.
Subject areas include (but are by no means limited to):
-Reactivity about heteroatoms for accessing new products or synthetic pathways
-Unusual valency main-group element compounds and their properties
-Highly strained (e.g. bridged) main-group element compounds and their properties
-Photochemical or thermal cleavage of heteroatom bonds and the resulting reactivity
-Uncommon and structurally interesting heteroatom-containing species (including those containing multiple bonds and catenation)
-Stereochemistry of compounds due to the presence of heteroatoms
-Neighboring group effects of heteroatoms on the properties of compounds
-Main-group element compounds as analogues of transition metal compounds
-Variations and new results from established and named reactions (including Wittig, Kabachnik–Fields, Pudovik, Arbuzov, Hirao, and Mitsunobu)
-Catalysis and green syntheses enabled by heteroatoms and their chemistry
-Applications of compounds where the heteroatom plays a critical role.
In addition to original research articles on heteroatom chemistry, the journal welcomes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.