Volumes of spheres and special values of zeta functions of $\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$

IF 0.5 3区 数学 Q3 MATHEMATICS
A. Karlsson, Massimiliano Pallich
{"title":"Volumes of spheres and special values\nof zeta functions of $\\mathbb{Z}$ and $\\mathbb{Z}/n\\mathbb{Z}$","authors":"A. Karlsson, Massimiliano Pallich","doi":"10.4064/aa220912-1-3","DOIUrl":null,"url":null,"abstract":"The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220912-1-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.
$\mathbb{Z}$和$\mathbb{Z}/n\mathbb{Z}$的球面体积和zeta函数的特殊值
将单位球在每一维上的体积解释为$\mathbb{Z}$的ζ函数的特殊值的乘积,类似于算术群理论中的Minkowski和Siegel的体积公式。为这个专门用于加泰罗尼亚数字的zeta函数找到了一个乘积公式。此外,还推导了各种其他zeta值的某些封闭形式表达式,特别是导致黎曼zeta函数的欧拉值的另一种观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信