Two hide-search games with rapid strategies for multiple parallel searches

IF 1.1 Q3 COMPUTER SCIENCE, THEORY & METHODS
P. Creasey
{"title":"Two hide-search games with rapid strategies for multiple parallel searches","authors":"P. Creasey","doi":"10.1515/comp-2022-0243","DOIUrl":null,"url":null,"abstract":"Abstract Making a rapid unpredictable decision from N N choices of unequal value is a common control task. When the cost of predictability can be modelled as a penalty hidden under a single option by an intelligent adversary, then an optimal strategy can be found efficiently in O ( N log N ) O\\left(N\\log N) steps using an approach described by Sakaguchi for a zero-sum hide-search game. In this work, we extend this to two games with multiple parallel predictions, either coordinated or drawn independently from the optimal distribution, both of which can be solved with the same scaling. An open-source code is provided online at https://github.com/pec27/rams.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"12 1","pages":"171 - 180"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Making a rapid unpredictable decision from N N choices of unequal value is a common control task. When the cost of predictability can be modelled as a penalty hidden under a single option by an intelligent adversary, then an optimal strategy can be found efficiently in O ( N log N ) O\left(N\log N) steps using an approach described by Sakaguchi for a zero-sum hide-search game. In this work, we extend this to two games with multiple parallel predictions, either coordinated or drawn independently from the optimal distribution, both of which can be solved with the same scaling. An open-source code is provided online at https://github.com/pec27/rams.
两个具有快速策略的多重平行搜索的隐藏搜索游戏
摘要从N N个不等值的选择中快速做出不可预测的决策是一项常见的控制任务。当可预测性成本可以被智能对手建模为隐藏在单个选项下的惩罚时,则可以使用Sakaguchi描述的零和隐藏搜索游戏的方法,在O(N log N)O\left(N\log N)步骤中有效地找到最优策略。在这项工作中,我们将其扩展到具有多个平行预测的两个游戏,无论是协调的还是独立于最优分布绘制的,这两个游戏都可以用相同的比例求解。开源代码在线提供,网址为https://github.com/pec27/rams.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Computer Science
Open Computer Science COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信