{"title":"Probability of ruin in discrete insurance risk model with dependent Pareto claims","authors":"C. Constantinescu, T. Kozubowski, Haoyu H. Qian","doi":"10.1515/demo-2019-0011","DOIUrl":null,"url":null,"abstract":"Abstract We present basic properties and discuss potential insurance applications of a new class of probability distributions on positive integers with power law tails. The distributions in this class are zero-inflated discrete counterparts of the Pareto distribution. In particular, we obtain the probability of ruin in the compound binomial risk model where the claims are zero-inflated discrete Pareto distributed and correlated by mixture.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"215 - 233"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0011","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We present basic properties and discuss potential insurance applications of a new class of probability distributions on positive integers with power law tails. The distributions in this class are zero-inflated discrete counterparts of the Pareto distribution. In particular, we obtain the probability of ruin in the compound binomial risk model where the claims are zero-inflated discrete Pareto distributed and correlated by mixture.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations