COMPACT ORBITS OF PARABOLIC SUBGROUPS

IF 0.8 2区 数学 Q2 MATHEMATICS
L. Biliotti, O. J. Windare
{"title":"COMPACT ORBITS OF PARABOLIC SUBGROUPS","authors":"L. Biliotti, O. J. Windare","doi":"10.1017/nmj.2021.14","DOIUrl":null,"url":null,"abstract":"Abstract We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra \n$\\mathfrak {u}$\n extends holomorphically to an action of the complexified group \n$U^{\\mathbb {C}}$\n and that the U-action on Z is Hamiltonian. If \n$G\\subset U^{\\mathbb {C}}$\n is compatible, there exists a gradient map \n$\\mu _{\\mathfrak p}:X \\longrightarrow \\mathfrak p$\n where \n$\\mathfrak g=\\mathfrak k \\oplus \\mathfrak p$\n is a Cartan decomposition of \n$\\mathfrak g$\n . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map \n$\\mu _{\\mathfrak p}$\n .","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"247 1","pages":"615 - 623"},"PeriodicalIF":0.8000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2021.14","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra $\mathfrak {u}$ extends holomorphically to an action of the complexified group $U^{\mathbb {C}}$ and that the U-action on Z is Hamiltonian. If $G\subset U^{\mathbb {C}}$ is compatible, there exists a gradient map $\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$ where $\mathfrak g=\mathfrak k \oplus \mathfrak p$ is a Cartan decomposition of $\mathfrak g$ . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map $\mu _{\mathfrak p}$ .
抛物子群的紧轨道
摘要研究了一个实约化群G对一个Kähler流形Z的实子流形X的作用。我们假设一个具有李代数$\mathfrak {u}$的紧连通李群U的作用全纯地扩展到一个复化群$U^{\mathbb {C}}$的作用,并且在Z上的U-作用是哈密顿的。如果$G\subset U^{\mathbb {C}}$兼容,则存在一个梯度映射$\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$,其中$\mathfrak g=\mathfrak k \oplus \mathfrak p$是$\mathfrak g$的Cartan分解。本文用梯度映射$\mu _{\mathfrak p}$描述了G的抛物子群的紧轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信