{"title":"COMPACT ORBITS OF PARABOLIC SUBGROUPS","authors":"L. Biliotti, O. J. Windare","doi":"10.1017/nmj.2021.14","DOIUrl":null,"url":null,"abstract":"Abstract We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra \n$\\mathfrak {u}$\n extends holomorphically to an action of the complexified group \n$U^{\\mathbb {C}}$\n and that the U-action on Z is Hamiltonian. If \n$G\\subset U^{\\mathbb {C}}$\n is compatible, there exists a gradient map \n$\\mu _{\\mathfrak p}:X \\longrightarrow \\mathfrak p$\n where \n$\\mathfrak g=\\mathfrak k \\oplus \\mathfrak p$\n is a Cartan decomposition of \n$\\mathfrak g$\n . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map \n$\\mu _{\\mathfrak p}$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2021.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra
$\mathfrak {u}$
extends holomorphically to an action of the complexified group
$U^{\mathbb {C}}$
and that the U-action on Z is Hamiltonian. If
$G\subset U^{\mathbb {C}}$
is compatible, there exists a gradient map
$\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$
where
$\mathfrak g=\mathfrak k \oplus \mathfrak p$
is a Cartan decomposition of
$\mathfrak g$
. In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map
$\mu _{\mathfrak p}$
.