{"title":"Asymptotic behavior of blowing-up radial solutions for quasilinear elliptic systems arising in the study of viscous, heat conducting fluids","authors":"A. Bachir, J. Giacomoni, G. Warnault","doi":"10.57262/die035-0910-511","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the following quasilinear elliptic system involving gradient terms in the form: { ∆pu = v |∇u| in Ω ∆pv = v β |∇u| in Ω, where Ω ⊂ R (N ≥ 2) is either equal to R or equal to a ball BR centered at the origin and having radius R > 0, 1 < p < ∞, m, q > 0, α ≥ 0, 0 ≤ β ≤ m and δ := (p− 1− α)(p− 1− β)− qm 6= 0. Our aim is to establish the asymptotics of the blowing-up radial solutions to the above system. Precisely, we provide the accurate asymptotic behavior at the boundary for such blowing-up radial solutions. For that,we prove a strong maximal principle for the problem of independent interest and study an auxiliary asymptotically autonomous system in R.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-0910-511","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we deal with the following quasilinear elliptic system involving gradient terms in the form: { ∆pu = v |∇u| in Ω ∆pv = v β |∇u| in Ω, where Ω ⊂ R (N ≥ 2) is either equal to R or equal to a ball BR centered at the origin and having radius R > 0, 1 < p < ∞, m, q > 0, α ≥ 0, 0 ≤ β ≤ m and δ := (p− 1− α)(p− 1− β)− qm 6= 0. Our aim is to establish the asymptotics of the blowing-up radial solutions to the above system. Precisely, we provide the accurate asymptotic behavior at the boundary for such blowing-up radial solutions. For that,we prove a strong maximal principle for the problem of independent interest and study an auxiliary asymptotically autonomous system in R.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.