A modified Cuckoo Search algorithm based optimal band subset selection approach for hyperspectral image classification

Q3 Chemistry
S. Sawant, M. Prabukumar, Sathishkumar Samiappan
{"title":"A modified Cuckoo Search algorithm based optimal band subset selection approach for hyperspectral image classification","authors":"S. Sawant, M. Prabukumar, Sathishkumar Samiappan","doi":"10.1255/jsi.2020.a6","DOIUrl":null,"url":null,"abstract":"Band selection is an effective way to reduce the size of hyperspectral data and to overcome the “curse of\ndimensionality” in ground object classification. This paper presents a band selection approach based on modified Cuckoo\nSearch (CS) optimisation with correlation-based initialisation. CS is a popular metaheuristic algorithm with efficient\noptimisation capabilities for band selection. However, it can easily fall into local optimum solutions. To avoid falling into a\nlocal optimum, an initialisation strategy based on correlation is adopted instead of random initialisation to initiate the location\nof nests. Experimental results with Indian Pines, Salinas and Pavia University datasets show that the proposed approach\nobtains overall accuracy of 82.83 %, 94.83 % and 91.79 %, respectively, which is higher than the original CS algorithm,\nGenetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Gray Wolf Optimisation (GWO).","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 13

Abstract

Band selection is an effective way to reduce the size of hyperspectral data and to overcome the “curse of dimensionality” in ground object classification. This paper presents a band selection approach based on modified Cuckoo Search (CS) optimisation with correlation-based initialisation. CS is a popular metaheuristic algorithm with efficient optimisation capabilities for band selection. However, it can easily fall into local optimum solutions. To avoid falling into a local optimum, an initialisation strategy based on correlation is adopted instead of random initialisation to initiate the location of nests. Experimental results with Indian Pines, Salinas and Pavia University datasets show that the proposed approach obtains overall accuracy of 82.83 %, 94.83 % and 91.79 %, respectively, which is higher than the original CS algorithm, Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Gray Wolf Optimisation (GWO).
一种改进的基于杜鹃搜索算法的高光谱图像分类最优波段子集选择方法
波段选择是减少高光谱数据大小和克服地物分类中“维数诅咒”的有效方法。提出了一种基于关联初始化的改进CuckooSearch (CS)优化的波段选择方法。CS是一种流行的元启发式算法,具有有效的优化能力,用于波段选择。然而,它很容易陷入局部最优解。为了避免陷入局部最优,采用基于相关性的初始化策略代替随机初始化来初始化巢的位置。在Indian Pines、Salinas和Pavia University数据集上的实验结果表明,该方法的总体准确率分别为82.83%、94.83%和91.79%,高于原有的CS算法、遗传算法(GA)、粒子群算法(PSO)和灰狼算法(GWO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信