{"title":"Comparing Kinetic and MEP Model of Charge Transport in Graphene","authors":"Liliana Luca, G. Mascali, G. Nastasi, V. Romano","doi":"10.1080/23324309.2020.1822870","DOIUrl":null,"url":null,"abstract":"Abstract Graphene has attracted the attention of several researchers because of its peculiar features. In particular, the study of charge transport in graphene is challenging for future electron devices. Usually, the physical description of electron flow in graphene given by the semiclassical Boltzmann equation is considered to be a good one. However, due to the computational complexity, its use in simulation tools is not practical and, as already done for traditional semiconductors such as Si or GaAs, simpler models are warranted. Here we will assess the validity of a class of hydrodynamical models based on the maximum entropy principle (MEP), by comparing, in the case of suspended monolayer graphene, the direct solution of the semiclassical Boltzmann equation for electrons, obtained by employing a discontinuous Galerkin approach, with the MEP distribution function. A reasonable agreement is observed.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"49 1","pages":"368 - 388"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2020.1822870","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2020.1822870","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Graphene has attracted the attention of several researchers because of its peculiar features. In particular, the study of charge transport in graphene is challenging for future electron devices. Usually, the physical description of electron flow in graphene given by the semiclassical Boltzmann equation is considered to be a good one. However, due to the computational complexity, its use in simulation tools is not practical and, as already done for traditional semiconductors such as Si or GaAs, simpler models are warranted. Here we will assess the validity of a class of hydrodynamical models based on the maximum entropy principle (MEP), by comparing, in the case of suspended monolayer graphene, the direct solution of the semiclassical Boltzmann equation for electrons, obtained by employing a discontinuous Galerkin approach, with the MEP distribution function. A reasonable agreement is observed.
期刊介绍:
Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.