Reconfiguration of Hamiltonian Cycles in Rectangular Grid Graphs

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
R. Nishat, S. Whitesides
{"title":"Reconfiguration of Hamiltonian Cycles in Rectangular Grid Graphs","authors":"R. Nishat, S. Whitesides","doi":"10.1142/s0129054123470019","DOIUrl":null,"url":null,"abstract":"We study reconfiguration of simple Hamiltonian cycles in a rectangular grid graph [Formula: see text], where the Hamiltonian cycle in each step of the reconfiguration connects every internal vertex of [Formula: see text] to a boundary vertex by a single straight line segment. We introduce two operations, flip and transpose, which are local to the grid. We show that any simple cycle of [Formula: see text] can be reconfigured to any other simple cycle of [Formula: see text] using [Formula: see text] flip and transpose operations. Our result proves that the simple Hamiltonian cycle graph [Formula: see text] is connected with respect to those two operations and has diameter [Formula: see text].","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054123470019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study reconfiguration of simple Hamiltonian cycles in a rectangular grid graph [Formula: see text], where the Hamiltonian cycle in each step of the reconfiguration connects every internal vertex of [Formula: see text] to a boundary vertex by a single straight line segment. We introduce two operations, flip and transpose, which are local to the grid. We show that any simple cycle of [Formula: see text] can be reconfigured to any other simple cycle of [Formula: see text] using [Formula: see text] flip and transpose operations. Our result proves that the simple Hamiltonian cycle graph [Formula: see text] is connected with respect to those two operations and has diameter [Formula: see text].
矩形网格图中哈密顿环的重构
我们研究了矩形网格图[公式:见正文]中简单哈密顿循环的重配置,其中重配置的每个步骤中的哈密顿循环通过单个直线段将[公式:参见正文]的每个内部顶点连接到边界顶点。我们介绍了两种操作,翻转和转置,它们是网格的局部操作。我们证明,使用[Formula:see-text]翻转和转置操作,可以将[Formula:see-text]的任何简单循环重新配置为[Formula:see-text'的任何其他简单循环。我们的结果证明了简单哈密顿循环图[公式:见正文]关于这两个运算是连通的,并且具有直径[公式:参见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信