3D stability analysis of unsupported rectangular excavation under pseudo-static seismic body force

IF 1.7 Q3 ENGINEERING, GEOLOGICAL
Patteera Petchkaew, S. Keawsawasvong, Weeradetch Tanapalungkorn, S. Likitlersuang
{"title":"3D stability analysis of unsupported rectangular excavation under pseudo-static seismic body force","authors":"Patteera Petchkaew, S. Keawsawasvong, Weeradetch Tanapalungkorn, S. Likitlersuang","doi":"10.1080/17486025.2021.2019321","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, the seismic stability number of unsupported excavations in cohesive-frictional soil under the influence of pseudo-static seismic body forces is examined. Three-dimensional finite element limit analysis is employed to numerically solve the upper and lower bounded models of unsupported excavations. The results are represented by a dimensionless stability number which is a function of four dimensionless parameters including the excavation aspect ratio, the excavated depth ratio, the soil’s effective friction angle, and the coefficient of horizontal earthquake acceleration. For the first time in literature, the influences of a soil’s effective friction angle and the coefficient of horizontal earthquake acceleration on the mechanisms of excavation failures are examined and discussed. Also presented is a case study to demonstrate the use of the proposed seismic stability number in studying unsupported excavations in seismic risk areas.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":"18 1","pages":"175 - 192"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2021.2019321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT In this paper, the seismic stability number of unsupported excavations in cohesive-frictional soil under the influence of pseudo-static seismic body forces is examined. Three-dimensional finite element limit analysis is employed to numerically solve the upper and lower bounded models of unsupported excavations. The results are represented by a dimensionless stability number which is a function of four dimensionless parameters including the excavation aspect ratio, the excavated depth ratio, the soil’s effective friction angle, and the coefficient of horizontal earthquake acceleration. For the first time in literature, the influences of a soil’s effective friction angle and the coefficient of horizontal earthquake acceleration on the mechanisms of excavation failures are examined and discussed. Also presented is a case study to demonstrate the use of the proposed seismic stability number in studying unsupported excavations in seismic risk areas.
拟静力地震体力作用下无支承矩形基坑三维稳定性分析
摘要本文研究了黏摩擦土中无支护基坑在拟静力作用下的地震稳定数。采用三维有限元极限分析方法对无支护基坑的上下界模型进行了数值求解。结果用无量纲稳定数表示,该稳定数是开挖长宽比、开挖深度比、土体有效摩擦角和水平地震加速度系数四个无量纲参数的函数。本文首次探讨了土体有效摩擦角和水平地震加速度系数对开挖破坏机理的影响。本文还介绍了一个案例研究,以证明所提出的地震稳定数在研究地震危险区无支护开挖中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
27
期刊介绍: Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信