Nonlinear simulation of an elastic tumor-host interface

Q2 Mathematics
Min-Jhe Lu, Chongxing Liu, Shuwang Li
{"title":"Nonlinear simulation of an elastic tumor-host interface","authors":"Min-Jhe Lu, Chongxing Liu, Shuwang Li","doi":"10.1515/cmb-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract We develop a computational method for simulating the nonlinear dynamics of an elastic tumor-host interface. This work is motivated by the recent linear stability analysis of a two-phase tumor model with an elastic membrane interface in 2D [47]. Unlike the classic tumor model with surface tension, the elastic interface condition is numerically challenging due to the 4th order derivative from the Helfrich bending energy. Here we are interested in exploring the nonlinear interface dynamics in a sharp interface framework. We consider a curvature dependent bending rigidity (curvature weakening [22]) to investigate metastasis patterns such as chains or fingers that invade the host environment. We solve the nutrient field and the Stokes flow field using a spectrally accurate boundary integral method, and update the interface using a nonstiff semi-implicit approach. Numerical results suggest curvature weakening promotes the development of branching patterns instead of encapsulated morphologies in a long period of time. For non-weakened bending rigidity, we are able to find self-similar shrinking morphologies based on marginally stable value of the apoptosis rate.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"7 1","pages":"25 - 47"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2019-0003","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We develop a computational method for simulating the nonlinear dynamics of an elastic tumor-host interface. This work is motivated by the recent linear stability analysis of a two-phase tumor model with an elastic membrane interface in 2D [47]. Unlike the classic tumor model with surface tension, the elastic interface condition is numerically challenging due to the 4th order derivative from the Helfrich bending energy. Here we are interested in exploring the nonlinear interface dynamics in a sharp interface framework. We consider a curvature dependent bending rigidity (curvature weakening [22]) to investigate metastasis patterns such as chains or fingers that invade the host environment. We solve the nutrient field and the Stokes flow field using a spectrally accurate boundary integral method, and update the interface using a nonstiff semi-implicit approach. Numerical results suggest curvature weakening promotes the development of branching patterns instead of encapsulated morphologies in a long period of time. For non-weakened bending rigidity, we are able to find self-similar shrinking morphologies based on marginally stable value of the apoptosis rate.
弹性肿瘤-宿主界面的非线性模拟
摘要我们开发了一种模拟弹性肿瘤-宿主界面非线性动力学的计算方法。这项工作的动机是最近对二维弹性膜界面的两相肿瘤模型进行的线性稳定性分析[47]。与具有表面张力的经典肿瘤模型不同,由于Helfrich弯曲能的四阶导数,弹性界面条件在数值上具有挑战性。在这里,我们有兴趣在一个清晰的界面框架中探索非线性界面动力学。我们考虑了曲率相关的弯曲刚度(曲率减弱[22]),以研究侵入宿主环境的转移模式,如链或指。我们使用光谱精确的边界积分方法求解营养物场和Stokes流场,并使用非iff半隐式方法更新界面。数值结果表明,在很长一段时间内,曲率减弱促进了分支模式而不是包裹形态的发展。对于未减弱的弯曲刚度,我们能够基于细胞凋亡率的边缘稳定值找到自相似的收缩形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信