A Priori Bounds for Elastic Scattering by Deterministic and Random Unbounded Rough Surfaces

IF 1.2 Q2 MATHEMATICS, APPLIED
Tianjiao Wang, Yi-Jhou Lin, Xiang-Yang Xu
{"title":"A Priori Bounds for Elastic Scattering by Deterministic and Random Unbounded Rough Surfaces","authors":"Tianjiao Wang, Yi-Jhou Lin, Xiang-Yang Xu","doi":"10.4208/csiam-am.so-2023-0001","DOIUrl":null,"url":null,"abstract":"This paper investigates the elastic scattering by unbounded deterministic and random rough surfaces, which both are assumed to be graphs of Lipschitz continuous functions. For the deterministic case, an a priori bound explicitly dependent on frequencies is derived by the variational approach. For the scattering by random rough surfaces with a random source, well-posedness of the corresponding variation problem is proved. Moreover, a similar bound with explicit dependence on frequencies for the random case is also established based upon the deterministic result, Pettis measurability theorem and Bochner's integrability Theorem.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the elastic scattering by unbounded deterministic and random rough surfaces, which both are assumed to be graphs of Lipschitz continuous functions. For the deterministic case, an a priori bound explicitly dependent on frequencies is derived by the variational approach. For the scattering by random rough surfaces with a random source, well-posedness of the corresponding variation problem is proved. Moreover, a similar bound with explicit dependence on frequencies for the random case is also established based upon the deterministic result, Pettis measurability theorem and Bochner's integrability Theorem.
确定性和随机无界粗糙表面弹性散射的先验界
本文研究了无界确定性粗糙表面和随机粗糙表面的弹性散射,假设这两个粗糙表面都是Lipschitz连续函数的图。对于确定性情况,通过变分方法导出了显式依赖于频率的先验界。对于具有随机源的随机粗糙表面的散射,证明了相应变分问题的适定性。此外,基于确定性结果、Pettis可测性定理和Bochner可积性定理,还建立了随机情况下显式依赖于频率的相似界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信