Embedding fractals in Banach, Hilbert or Euclidean spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. Banakh, M. Nowak, F. Strobin
{"title":"Embedding fractals in Banach, Hilbert or Euclidean spaces","authors":"T. Banakh, M. Nowak, F. Strobin","doi":"10.4171/JFG/94","DOIUrl":null,"url":null,"abstract":"By a metric fractal we understand a compact metric space $K$ endowed with a finite family $\\mathcal F$ of contracting self-maps of $K$ such that $K=\\bigcup_{f\\in\\mathcal F}f(K)$. If $K$ is a subset of a metric space $X$ and each $f\\in\\mathcal F$ extends to a contracting self-map of $X$, then we say that $(K,\\mathcal F)$ is a fractal in $X$. We prove that each metric fractal $(K,\\mathcal F)$ is \n$\\bullet$ isometrically equivalent to a fractal in the Banach spaces $C[0,1]$ and $\\ell_\\infty$; \n$\\bullet$ bi-Lipschitz equivalent to a fractal in the Banach space $c_0$; \n$\\bullet$ isometrically equivalent to a fractal in the Hilbert space $\\ell_2$ if $K$ is an ultrametric space. \nWe prove that for a metric fractal $(K,\\mathcal F)$ with the doubling property there exists $k\\in\\mathbb N$ such that the metric fractal $(K,\\mathcal F^{\\circ k})$ endowed with the fractal structure $\\mathcal F^{\\circ k}=\\{f_1\\circ\\dots\\circ f_k:f_1,\\dots,f_k\\in\\mathcal F\\}$ is equi-H\\\"older equivalent to a fractal in a Euclidean space $\\mathbb R^d$. This result is used to prove our main result saying that each finite-dimensional compact metrizable space $K$ containing an open uncountable zero-dimensional space $Z$ is homeomorphic to a fractal in a Euclidean space $\\mathbb R^d$. For $Z$, being a copy of the Cantor set, this embedding result was proved by Duvall and Husch in 1992.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/94","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

By a metric fractal we understand a compact metric space $K$ endowed with a finite family $\mathcal F$ of contracting self-maps of $K$ such that $K=\bigcup_{f\in\mathcal F}f(K)$. If $K$ is a subset of a metric space $X$ and each $f\in\mathcal F$ extends to a contracting self-map of $X$, then we say that $(K,\mathcal F)$ is a fractal in $X$. We prove that each metric fractal $(K,\mathcal F)$ is $\bullet$ isometrically equivalent to a fractal in the Banach spaces $C[0,1]$ and $\ell_\infty$; $\bullet$ bi-Lipschitz equivalent to a fractal in the Banach space $c_0$; $\bullet$ isometrically equivalent to a fractal in the Hilbert space $\ell_2$ if $K$ is an ultrametric space. We prove that for a metric fractal $(K,\mathcal F)$ with the doubling property there exists $k\in\mathbb N$ such that the metric fractal $(K,\mathcal F^{\circ k})$ endowed with the fractal structure $\mathcal F^{\circ k}=\{f_1\circ\dots\circ f_k:f_1,\dots,f_k\in\mathcal F\}$ is equi-H\"older equivalent to a fractal in a Euclidean space $\mathbb R^d$. This result is used to prove our main result saying that each finite-dimensional compact metrizable space $K$ containing an open uncountable zero-dimensional space $Z$ is homeomorphic to a fractal in a Euclidean space $\mathbb R^d$. For $Z$, being a copy of the Cantor set, this embedding result was proved by Duvall and Husch in 1992.
在巴拿赫、希尔伯特或欧几里得空间中嵌入分形
通过度量分形,我们可以理解一个紧致度量空间$K$,它具有一个有限族$\mathcal F$的$K$的收缩自映射,使得$K=\bigcup_{f\in\mathcal F}f(K)$。如果$K$是度量空间$X$的子集,并且每个$f\in\mathcal F$都延伸到$X$的收缩自映射,那么我们说$(K,\mathcal F)$是$X$中的分形。我们证明了每个度量分形$(K,\mathcal F)$与Banach空间$C[0,1]$和$\ell_\infty$中的分形$\bullet$等距等价;$\bullet$分形在Banach空间中的bi-Lipschitz等价$c_0$$\bullet$等距等价于希尔伯特空间中的分形$\ell_2$如果$K$是超尺度空间。证明了具有倍性的度规分形$(K,\mathcal F)$存在$k\in\mathbb N$,使得具有分形结构$\mathcal F^{\circ k}=\{f_1\circ\dots\circ f_k:f_1,\dots,f_k\in\mathcal F\}$的度规分形$(K,\mathcal F^{\circ k})$ equi-Hölder等价于欧几里德空间$\mathbb R^d$中的分形。这一结果证明了我们的主要结论,即每个有限维紧致可度量空间$K$包含一个开放的不可数零维空间$Z$与欧几里得空间$\mathbb R^d$中的分形是同纯的。对于$Z$,作为Cantor集合的副本,这个嵌入结果由Duvall和Husch在1992年证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信