Embedding fractals in Banach, Hilbert or Euclidean spaces

IF 1.1 4区 数学 Q1 MATHEMATICS
T. Banakh, M. Nowak, F. Strobin
{"title":"Embedding fractals in Banach, Hilbert or Euclidean spaces","authors":"T. Banakh, M. Nowak, F. Strobin","doi":"10.4171/JFG/94","DOIUrl":null,"url":null,"abstract":"By a metric fractal we understand a compact metric space $K$ endowed with a finite family $\\mathcal F$ of contracting self-maps of $K$ such that $K=\\bigcup_{f\\in\\mathcal F}f(K)$. If $K$ is a subset of a metric space $X$ and each $f\\in\\mathcal F$ extends to a contracting self-map of $X$, then we say that $(K,\\mathcal F)$ is a fractal in $X$. We prove that each metric fractal $(K,\\mathcal F)$ is \n$\\bullet$ isometrically equivalent to a fractal in the Banach spaces $C[0,1]$ and $\\ell_\\infty$; \n$\\bullet$ bi-Lipschitz equivalent to a fractal in the Banach space $c_0$; \n$\\bullet$ isometrically equivalent to a fractal in the Hilbert space $\\ell_2$ if $K$ is an ultrametric space. \nWe prove that for a metric fractal $(K,\\mathcal F)$ with the doubling property there exists $k\\in\\mathbb N$ such that the metric fractal $(K,\\mathcal F^{\\circ k})$ endowed with the fractal structure $\\mathcal F^{\\circ k}=\\{f_1\\circ\\dots\\circ f_k:f_1,\\dots,f_k\\in\\mathcal F\\}$ is equi-H\\\"older equivalent to a fractal in a Euclidean space $\\mathbb R^d$. This result is used to prove our main result saying that each finite-dimensional compact metrizable space $K$ containing an open uncountable zero-dimensional space $Z$ is homeomorphic to a fractal in a Euclidean space $\\mathbb R^d$. For $Z$, being a copy of the Cantor set, this embedding result was proved by Duvall and Husch in 1992.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/94","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

By a metric fractal we understand a compact metric space $K$ endowed with a finite family $\mathcal F$ of contracting self-maps of $K$ such that $K=\bigcup_{f\in\mathcal F}f(K)$. If $K$ is a subset of a metric space $X$ and each $f\in\mathcal F$ extends to a contracting self-map of $X$, then we say that $(K,\mathcal F)$ is a fractal in $X$. We prove that each metric fractal $(K,\mathcal F)$ is $\bullet$ isometrically equivalent to a fractal in the Banach spaces $C[0,1]$ and $\ell_\infty$; $\bullet$ bi-Lipschitz equivalent to a fractal in the Banach space $c_0$; $\bullet$ isometrically equivalent to a fractal in the Hilbert space $\ell_2$ if $K$ is an ultrametric space. We prove that for a metric fractal $(K,\mathcal F)$ with the doubling property there exists $k\in\mathbb N$ such that the metric fractal $(K,\mathcal F^{\circ k})$ endowed with the fractal structure $\mathcal F^{\circ k}=\{f_1\circ\dots\circ f_k:f_1,\dots,f_k\in\mathcal F\}$ is equi-H\"older equivalent to a fractal in a Euclidean space $\mathbb R^d$. This result is used to prove our main result saying that each finite-dimensional compact metrizable space $K$ containing an open uncountable zero-dimensional space $Z$ is homeomorphic to a fractal in a Euclidean space $\mathbb R^d$. For $Z$, being a copy of the Cantor set, this embedding result was proved by Duvall and Husch in 1992.
在巴拿赫、希尔伯特或欧几里得空间中嵌入分形
通过度量分形,我们可以理解一个紧致度量空间$K$,它具有一个有限族$\mathcal F$的$K$的收缩自映射,使得$K=\bigcup_{f\in\mathcal F}f(K)$。如果$K$是度量空间$X$的子集,并且每个$f\in\mathcal F$都延伸到$X$的收缩自映射,那么我们说$(K,\mathcal F)$是$X$中的分形。我们证明了每个度量分形$(K,\mathcal F)$与Banach空间$C[0,1]$和$\ell_\infty$中的分形$\bullet$等距等价;$\bullet$分形在Banach空间中的bi-Lipschitz等价$c_0$$\bullet$等距等价于希尔伯特空间中的分形$\ell_2$如果$K$是超尺度空间。证明了具有倍性的度规分形$(K,\mathcal F)$存在$k\in\mathbb N$,使得具有分形结构$\mathcal F^{\circ k}=\{f_1\circ\dots\circ f_k:f_1,\dots,f_k\in\mathcal F\}$的度规分形$(K,\mathcal F^{\circ k})$ equi-Hölder等价于欧几里德空间$\mathbb R^d$中的分形。这一结果证明了我们的主要结论,即每个有限维紧致可度量空间$K$包含一个开放的不可数零维空间$Z$与欧几里得空间$\mathbb R^d$中的分形是同纯的。对于$Z$,作为Cantor集合的副本,这个嵌入结果由Duvall和Husch在1992年证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信