{"title":"Fredholm inversion around a singularity: Application to autoregressive time series in Banach space","authors":"Won-Ki Seo","doi":"10.3934/era.2023252","DOIUrl":null,"url":null,"abstract":"This paper considers inverting a holomorphic Fredholm operator pencil. Specifically, we provide necessary and sufficient conditions for the inverse of a holomorphic Fredholm operator pencil to have a simple pole and a second order pole. Based on these results, a closed-form expression of the Laurent expansion of the inverse around an isolated singularity is obtained in each case. As an application, we also obtain a suitable extension of the Granger-Johansen representation theorem for random sequences taking values in a separable Banach space. Due to our closed-form expression of the inverse, we may fully characterize solutions to a given autoregressive law of motion except a term that depends on initial values.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023252","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers inverting a holomorphic Fredholm operator pencil. Specifically, we provide necessary and sufficient conditions for the inverse of a holomorphic Fredholm operator pencil to have a simple pole and a second order pole. Based on these results, a closed-form expression of the Laurent expansion of the inverse around an isolated singularity is obtained in each case. As an application, we also obtain a suitable extension of the Granger-Johansen representation theorem for random sequences taking values in a separable Banach space. Due to our closed-form expression of the inverse, we may fully characterize solutions to a given autoregressive law of motion except a term that depends on initial values.