Advances in the application of biosynthesis and metabolic engineering of flavonoids in plants

IF 0.8 4区 生物学 Q4 PLANT SCIENCES
Y. Wang, Peng Li, L. Yao, Y. Shang, S. Liu, J. Meng, S. Zhang, H.H. Li
{"title":"Advances in the application of biosynthesis and metabolic engineering of flavonoids in plants","authors":"Y. Wang, Peng Li, L. Yao, Y. Shang, S. Liu, J. Meng, S. Zhang, H.H. Li","doi":"10.32615/bp.2022.014","DOIUrl":null,"url":null,"abstract":"Flavonoids are secondary metabolites widely distributed in plants. They not only confer a wide spectrum of pigmentation to plant flowers but also protect plants from various biotic and abiotic stresses. Simultaneously, these compounds also offer health benefits to humans. Significant efforts have been made to correlate specific flavonoid production with biosynthetic pathway gene expression. Some structure genes and transcription factors that regulate the biosynthetic pathway have been identified. However, the diverse and complex control of flavonoid accumulation is still not well understood. In this mini-review, we summarized the improvement of flavonoids by genetic engineering from the aspects of flower colour, plant resistance, and benefits on the human diet. A perspective on flavonoid research in plants is provided.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2022.014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Flavonoids are secondary metabolites widely distributed in plants. They not only confer a wide spectrum of pigmentation to plant flowers but also protect plants from various biotic and abiotic stresses. Simultaneously, these compounds also offer health benefits to humans. Significant efforts have been made to correlate specific flavonoid production with biosynthetic pathway gene expression. Some structure genes and transcription factors that regulate the biosynthetic pathway have been identified. However, the diverse and complex control of flavonoid accumulation is still not well understood. In this mini-review, we summarized the improvement of flavonoids by genetic engineering from the aspects of flower colour, plant resistance, and benefits on the human diet. A perspective on flavonoid research in plants is provided.
黄酮类化合物生物合成和代谢工程在植物中的应用进展
黄酮类化合物是植物中广泛分布的次生代谢产物。它们不仅赋予植物花朵广泛的色素沉着,还保护植物免受各种生物和非生物胁迫。同时,这些化合物也对人类健康有益。已经做出了重大努力来将特定的类黄酮产生与生物合成途径基因表达联系起来。一些调节生物合成途径的结构基因和转录因子已被鉴定。然而,类黄酮积累的多样性和复杂性控制仍然没有得到很好的理解。在这篇综述中,我们从花色、植物抗性和对人类饮食的益处等方面总结了基因工程对黄酮类化合物的改良。对植物黄酮类化合物的研究进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biologia Plantarum
Biologia Plantarum 生物-植物科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信