{"title":"Algorithm xxx: Spherical Triangle Algorithm: A Fast Oracle for Convex Hull Membership Queries","authors":"B. Kalantari, Yikai Zhang","doi":"10.1145/3516520","DOIUrl":null,"url":null,"abstract":"<jats:p>\n The\n <jats:italic>Convex Hull Membership</jats:italic>\n (CHM) tests whether\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p \\in conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n , where\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p \\)</jats:tex-math>\n </jats:inline-formula>\n and the\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(n \\)</jats:tex-math>\n </jats:inline-formula>\n points of\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(S \\)</jats:tex-math>\n </jats:inline-formula>\n lie in\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\mathbb { R}^m \\)</jats:tex-math>\n </jats:inline-formula>\n . CHM finds applications in Linear Programming, Computational Geometry and Machine Learning. The\n <jats:italic>Triangle Algorithm</jats:italic>\n (TA), previously developed, in\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(O(1/\\varepsilon ^2) \\)</jats:tex-math>\n </jats:inline-formula>\n iterations computes\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p^{\\prime } \\in conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n , either an\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\varepsilon \\)</jats:tex-math>\n </jats:inline-formula>\n -\n <jats:italic>approximate solution</jats:italic>\n , or a\n <jats:italic>witness</jats:italic>\n certifying\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p \\not\\in conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n . We first prove the equivalence of exact and approximate versions of CHM and\n <jats:italic>Spherical</jats:italic>\n -CHM, where\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p=0 \\)</jats:tex-math>\n </jats:inline-formula>\n and\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Vert v\\Vert =1 \\)</jats:tex-math>\n </jats:inline-formula>\n for each\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(v \\)</jats:tex-math>\n </jats:inline-formula>\n in\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(S \\)</jats:tex-math>\n </jats:inline-formula>\n . If for some\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(M \\ge 1 \\)</jats:tex-math>\n </jats:inline-formula>\n every non-witness with\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Vert p^{\\prime }\\Vert \\gt \\varepsilon \\)</jats:tex-math>\n </jats:inline-formula>\n admits\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(v \\in S \\)</jats:tex-math>\n </jats:inline-formula>\n satisfying\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Vert p^{\\prime } - v\\Vert \\ge \\sqrt {1+\\varepsilon /M} \\)</jats:tex-math>\n </jats:inline-formula>\n , we prove the number of iterations improves to\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(O(M/\\varepsilon) \\)</jats:tex-math>\n </jats:inline-formula>\n and\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(M \\le 1/\\varepsilon \\)</jats:tex-math>\n </jats:inline-formula>\n always holds. Equivalence of CHM and Spherical-CHM implies\n <jats:italic>Minimum Enclosing Ball</jats:italic>\n (MEB) algorithms can be modified to solve CHM. However, we prove\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\((1+ \\varepsilon) \\)</jats:tex-math>\n </jats:inline-formula>\n -approximation in MEB is\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Omega (\\sqrt {\\varepsilon }) \\)</jats:tex-math>\n </jats:inline-formula>\n -approximation in Spherical-CHM. Thus even\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(O(1/\\varepsilon) \\)</jats:tex-math>\n </jats:inline-formula>\n iteration MEB algorithms are not superior to Spherical-TA. Similar weakness is proved for MEB core sets. Spherical-TA also results a variant of the\n <jats:italic>All Vertex Triangle Algorithm</jats:italic>\n (AVTA) for computing all vertices of\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n . Substantial computations on distinct problems demonstrate that TA and Spherical-TA generally achieve superior efficiency over algorithms such as Frank-Wolfe, MEB and LP-Solver.\n </jats:p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3516520","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5
Abstract
The
Convex Hull Membership
(CHM) tests whether
\(p \in conv(S) \)
, where
\(p \)
and the
\(n \)
points of
\(S \)
lie in
\(\mathbb { R}^m \)
. CHM finds applications in Linear Programming, Computational Geometry and Machine Learning. The
Triangle Algorithm
(TA), previously developed, in
\(O(1/\varepsilon ^2) \)
iterations computes
\(p^{\prime } \in conv(S) \)
, either an
\(\varepsilon \)
-
approximate solution
, or a
witness
certifying
\(p \not\in conv(S) \)
. We first prove the equivalence of exact and approximate versions of CHM and
Spherical
-CHM, where
\(p=0 \)
and
\(\Vert v\Vert =1 \)
for each
\(v \)
in
\(S \)
. If for some
\(M \ge 1 \)
every non-witness with
\(\Vert p^{\prime }\Vert \gt \varepsilon \)
admits
\(v \in S \)
satisfying
\(\Vert p^{\prime } - v\Vert \ge \sqrt {1+\varepsilon /M} \)
, we prove the number of iterations improves to
\(O(M/\varepsilon) \)
and
\(M \le 1/\varepsilon \)
always holds. Equivalence of CHM and Spherical-CHM implies
Minimum Enclosing Ball
(MEB) algorithms can be modified to solve CHM. However, we prove
\((1+ \varepsilon) \)
-approximation in MEB is
\(\Omega (\sqrt {\varepsilon }) \)
-approximation in Spherical-CHM. Thus even
\(O(1/\varepsilon) \)
iteration MEB algorithms are not superior to Spherical-TA. Similar weakness is proved for MEB core sets. Spherical-TA also results a variant of the
All Vertex Triangle Algorithm
(AVTA) for computing all vertices of
\(conv(S) \)
. Substantial computations on distinct problems demonstrate that TA and Spherical-TA generally achieve superior efficiency over algorithms such as Frank-Wolfe, MEB and LP-Solver.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.