Existence and limiting behavior of min-max solutions of the Ginzburg–Landau equations on compact manifolds

IF 1.3 1区 数学 Q1 MATHEMATICS
Daniel Stern
{"title":"Existence and limiting behavior of min-max solutions of the Ginzburg–Landau equations on compact manifolds","authors":"Daniel Stern","doi":"10.4310/JDG/1622743143","DOIUrl":null,"url":null,"abstract":"We use a natural two-parameter min-max construction to produce critical points of the Ginzburg–Landau functionals on a compact Riemannian manifold of dimension $\\geq 2$. We investigate the limiting behavior of these critical points as $\\varepsilon \\to 0$, and show in particular that some of the energy concentrates on a nontrivial stationary, rectifiable $(n-2)$-varifold as $\\varepsilon \\to 0$, suggesting connections to the min-max construction of minimal $(n-2)$-submanifolds.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":"118 1","pages":"335-371"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1622743143","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

Abstract

We use a natural two-parameter min-max construction to produce critical points of the Ginzburg–Landau functionals on a compact Riemannian manifold of dimension $\geq 2$. We investigate the limiting behavior of these critical points as $\varepsilon \to 0$, and show in particular that some of the energy concentrates on a nontrivial stationary, rectifiable $(n-2)$-varifold as $\varepsilon \to 0$, suggesting connections to the min-max construction of minimal $(n-2)$-submanifolds.
紧流形上Ginzburg-Landau方程最小-极大解的存在性及极限行为
我们使用自然双参数最小-最大构造来产生维度为$\geq2$的紧致黎曼流形上的Ginzburg–Landau泛函的临界点。我们研究了这些临界点作为$\varepsilon\to0$的极限行为,并特别证明了一些能量集中在一个非平凡的平稳的、可直的$(n-2)$-变倍作为$\varepsilon\\to0$,这表明了与极小$(n-1)$-子流形的min-max构造的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信