{"title":"On the Hermitian structures of the sequence of tangent bundles of an affine manifold endowed with a Riemannian metric","authors":"M. Boucetta","doi":"10.1515/coma-2021-0128","DOIUrl":null,"url":null,"abstract":"Abstract Let (M, ∇, 〈, 〉) be a manifold endowed with a flat torsionless connection r and a Riemannian metric 〈, 〉 and (TkM)k≥1 the sequence of tangent bundles given by TkM = T(Tk−1M) and T1M = TM. We show that, for any k ≥ 1, TkM carries a Hermitian structure (Jk, gk) and a flat torsionless connection ∇k and when M is a Lie group and (∇, 〈, 〉) are left invariant there is a Lie group structure on each TkM such that (Jk, gk, ∇k) are left invariant. It is well-known that (TM, J1, g1) is Kähler if and only if 〈, 〉 is Hessian, i.e, in each system of affine coordinates (x1, . . ., xn), 〈 ∂xi,∂xj 〉=∂2φ∂xi∂xj \\left\\langle {{\\partial _x}_{_i},{\\partial _{{x_j}}}} \\right\\rangle = {{{\\partial ^2}\\phi } \\over {{\\partial _x}_{_i}{\\partial _x}_j}} . Having in mind many generalizations of the Kähler condition introduced recently, we give the conditions on (∇, 〈, 〉) so that (TM, J1, g1) is balanced, locally conformally balanced, locally conformally Kähler, pluriclosed, Gauduchon, Vaisman or Calabi-Yau with torsion. Moreover, we can control at the level of (∇, 〈, 〉) the conditions insuring that some (TkM, Jk, gk) or all of them satisfy a generalized Kähler condition. For instance, we show that there are some classes of (M, ∇, 〈, 〉) such that, for any k ≥ 1, (TkM, Jk, gk) is balanced non-Kähler and Calabi-Yau with torsion. By carefully studying the geometry of (M, ∇, 〈, 〉), we develop a powerful machinery to build a large classes of generalized Kähler manifolds.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"18 - 51"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let (M, ∇, 〈, 〉) be a manifold endowed with a flat torsionless connection r and a Riemannian metric 〈, 〉 and (TkM)k≥1 the sequence of tangent bundles given by TkM = T(Tk−1M) and T1M = TM. We show that, for any k ≥ 1, TkM carries a Hermitian structure (Jk, gk) and a flat torsionless connection ∇k and when M is a Lie group and (∇, 〈, 〉) are left invariant there is a Lie group structure on each TkM such that (Jk, gk, ∇k) are left invariant. It is well-known that (TM, J1, g1) is Kähler if and only if 〈, 〉 is Hessian, i.e, in each system of affine coordinates (x1, . . ., xn), 〈 ∂xi,∂xj 〉=∂2φ∂xi∂xj \left\langle {{\partial _x}_{_i},{\partial _{{x_j}}}} \right\rangle = {{{\partial ^2}\phi } \over {{\partial _x}_{_i}{\partial _x}_j}} . Having in mind many generalizations of the Kähler condition introduced recently, we give the conditions on (∇, 〈, 〉) so that (TM, J1, g1) is balanced, locally conformally balanced, locally conformally Kähler, pluriclosed, Gauduchon, Vaisman or Calabi-Yau with torsion. Moreover, we can control at the level of (∇, 〈, 〉) the conditions insuring that some (TkM, Jk, gk) or all of them satisfy a generalized Kähler condition. For instance, we show that there are some classes of (M, ∇, 〈, 〉) such that, for any k ≥ 1, (TkM, Jk, gk) is balanced non-Kähler and Calabi-Yau with torsion. By carefully studying the geometry of (M, ∇, 〈, 〉), we develop a powerful machinery to build a large classes of generalized Kähler manifolds.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.