M. Vedi, H. S. Nalabolu, Chien-Wei Lin, M. Hoffman, Jennifer R. Smith, K. Brodie, J. D. De Pons, W. Demos, A. Gibson, G. Hayman, M. L. Hill, M. Kaldunski, L. Lamers, S. Laulederkind, K. Thorat, J. Thota, M. Tutaj, M. Tutaj, Shur-Jen Wang, S. Zacher, M. Dwinell, A. Kwitek
{"title":"MOET: a web-based gene set enrichment tool at the Rat Genome Database for multiontology and multispecies analyses","authors":"M. Vedi, H. S. Nalabolu, Chien-Wei Lin, M. Hoffman, Jennifer R. Smith, K. Brodie, J. D. De Pons, W. Demos, A. Gibson, G. Hayman, M. L. Hill, M. Kaldunski, L. Lamers, S. Laulederkind, K. Thorat, J. Thota, M. Tutaj, M. Tutaj, Shur-Jen Wang, S. Zacher, M. Dwinell, A. Kwitek","doi":"10.1093/genetics/iyac005","DOIUrl":null,"url":null,"abstract":"Abstract Biological interpretation of a large amount of gene or protein data is complex. Ontology analysis tools are imperative in finding functional similarities through overrepresentation or enrichment of terms associated with the input gene or protein lists. However, most tools are limited by their ability to do ontology-specific and species-limited analyses. Furthermore, some enrichment tools are not updated frequently with recent information from databases, thus giving users inaccurate, outdated or uninformative data. Here, we present MOET or the Multi-Ontology Enrichment Tool (v.1 released in April 2019 and v.2 released in May 2021), an ontology analysis tool leveraging data that the Rat Genome Database (RGD) integrated from in-house expert curation and external databases including the National Center for Biotechnology Information (NCBI), Mouse Genome Informatics (MGI), The Kyoto Encyclopedia of Genes and Genomes (KEGG), The Gene Ontology Resource, UniProt-GOA, and others. Given a gene or protein list, MOET analysis identifies significantly overrepresented ontology terms using a hypergeometric test and provides nominal and Bonferroni corrected P-values and odds ratios for the overrepresented terms. The results are shown as a downloadable list of terms with and without Bonferroni correction, and a graph of the P-values and number of annotated genes for each term in the list. MOET can be accessed freely from https://rgd.mcw.edu/rgdweb/enrichment/start.html.","PeriodicalId":12706,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyac005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Biological interpretation of a large amount of gene or protein data is complex. Ontology analysis tools are imperative in finding functional similarities through overrepresentation or enrichment of terms associated with the input gene or protein lists. However, most tools are limited by their ability to do ontology-specific and species-limited analyses. Furthermore, some enrichment tools are not updated frequently with recent information from databases, thus giving users inaccurate, outdated or uninformative data. Here, we present MOET or the Multi-Ontology Enrichment Tool (v.1 released in April 2019 and v.2 released in May 2021), an ontology analysis tool leveraging data that the Rat Genome Database (RGD) integrated from in-house expert curation and external databases including the National Center for Biotechnology Information (NCBI), Mouse Genome Informatics (MGI), The Kyoto Encyclopedia of Genes and Genomes (KEGG), The Gene Ontology Resource, UniProt-GOA, and others. Given a gene or protein list, MOET analysis identifies significantly overrepresented ontology terms using a hypergeometric test and provides nominal and Bonferroni corrected P-values and odds ratios for the overrepresented terms. The results are shown as a downloadable list of terms with and without Bonferroni correction, and a graph of the P-values and number of annotated genes for each term in the list. MOET can be accessed freely from https://rgd.mcw.edu/rgdweb/enrichment/start.html.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.