Gradient estimates for weighted $p$-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds

IF 0.4 4区 数学 Q4 MATHEMATICS
L. Dai, N. Dung, Nguyen Dang Tuyen, Liang-cai Zhao
{"title":"Gradient estimates for weighted $p$-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds","authors":"L. Dai, N. Dung, Nguyen Dang Tuyen, Liang-cai Zhao","doi":"10.2996/kmj/kmj45102","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the non-linear general $p$-Laplacian equation $\\Delta_{p,f}u+F(u)=0$ for a smooth function $F$ on smooth metric measure spaces. Assume that a Sobolev inequality holds true on $M$ and an integral Ricci curvature is small, we first prove a local gradient estimate for the equation. Then, as its applications, we prove several Liouville type results on manifolds with lower bounds of Ricci curvature. We also derive new local gradient estimates provided that the integral Ricci curvature is small enough.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/kmj45102","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the non-linear general $p$-Laplacian equation $\Delta_{p,f}u+F(u)=0$ for a smooth function $F$ on smooth metric measure spaces. Assume that a Sobolev inequality holds true on $M$ and an integral Ricci curvature is small, we first prove a local gradient estimate for the equation. Then, as its applications, we prove several Liouville type results on manifolds with lower bounds of Ricci curvature. We also derive new local gradient estimates provided that the integral Ricci curvature is small enough.
具有Sobolev不等式和积分Ricci界的黎曼流形上加权$p$-Laplace方程的梯度估计
在本文中,我们考虑非线性广义$p$-Laplacian方程$\Delta_{p,f}u+对于光滑度量测度空间上的光滑函数$F$,F(u)=0$。假设Sobolev不等式在$M$上成立,并且积分Ricci曲率很小,我们首先证明了方程的局部梯度估计。然后,作为其应用,我们证明了具有Ricci曲率下界的流形上的几个Liouville型结果。我们还导出了新的局部梯度估计,前提是积分Ricci曲率足够小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信