Lauren Blackwell Landon , Christina Rokholt , Kelley J. Slack , Yvonne Pecena
{"title":"Selecting astronauts for long-duration exploration missions: Considerations for team performance and functioning","authors":"Lauren Blackwell Landon , Christina Rokholt , Kelley J. Slack , Yvonne Pecena","doi":"10.1016/j.reach.2017.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, NASA has renewed its focus on manned missions beyond low Earth orbit. These missions will take astronauts to asteroids, the moon, or to Mars. As mission designs become more concrete, it is clear that they will differ from current missions to the International Space Station (ISS) in many ways, including duration, real-time communication with ground, evacuation options, crew rotations, and distance from Earth. These differences will add new challenges to maintaining human health and performance on long-duration exploratory missions (LDEMs). Given the integral nature of teamwork to the success of space missions, differences from current ISS missions will also pose new risk factors to strong team performance over the course of the missions. Factors influencing team performance have previously been identified on past space missions and studies in analogous environments (e.g., submarines, Antarctic research stations). These existing risk factors that affect team performance may be exacerbated on longer space missions in closer quarters, and new risk factors are likely to emerge. Selecting astronauts with the “right stuff” for the new LDEM teams becomes an essential first step in promoting mission success.</p><p>With this in mind, the purpose of this review is to identify the critical psychological factors, especially those relevant to functioning in a team-based mission, to consider during the astronaut selection process that may mitigate risk factors and enhance team performance. First, a review of the risk factors that have an identified impact on team performance will serve as context for the critical psychological factors to consider in selection. Second, this review will examine the psychological factors to consider in the selection process to best mitigate the risk factors previously identified. Third, selection methods and measures used to evaluate these psychological factors will be identified. Fourth and finally, we will list recommendations for current operations and future research.</p></div>","PeriodicalId":37501,"journal":{"name":"REACH","volume":"5 ","pages":"Pages 33-56"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.reach.2017.03.002","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REACH","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352309316300281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 31
Abstract
In recent years, NASA has renewed its focus on manned missions beyond low Earth orbit. These missions will take astronauts to asteroids, the moon, or to Mars. As mission designs become more concrete, it is clear that they will differ from current missions to the International Space Station (ISS) in many ways, including duration, real-time communication with ground, evacuation options, crew rotations, and distance from Earth. These differences will add new challenges to maintaining human health and performance on long-duration exploratory missions (LDEMs). Given the integral nature of teamwork to the success of space missions, differences from current ISS missions will also pose new risk factors to strong team performance over the course of the missions. Factors influencing team performance have previously been identified on past space missions and studies in analogous environments (e.g., submarines, Antarctic research stations). These existing risk factors that affect team performance may be exacerbated on longer space missions in closer quarters, and new risk factors are likely to emerge. Selecting astronauts with the “right stuff” for the new LDEM teams becomes an essential first step in promoting mission success.
With this in mind, the purpose of this review is to identify the critical psychological factors, especially those relevant to functioning in a team-based mission, to consider during the astronaut selection process that may mitigate risk factors and enhance team performance. First, a review of the risk factors that have an identified impact on team performance will serve as context for the critical psychological factors to consider in selection. Second, this review will examine the psychological factors to consider in the selection process to best mitigate the risk factors previously identified. Third, selection methods and measures used to evaluate these psychological factors will be identified. Fourth and finally, we will list recommendations for current operations and future research.
期刊介绍:
The Official Human Space Exploration Review Journal of the International Academy of Astronautics (IAA) and the International Astronautical Federation (IAF) REACH – Reviews in Human Space Exploration is an international review journal that covers the entire field of human space exploration, including: -Human Space Exploration Mission Scenarios -Robotic Space Exploration Missions (Preparing or Supporting Human Missions) -Commercial Human Spaceflight -Space Habitation and Environmental Health -Space Physiology, Psychology, Medicine and Environmental Health -Space Radiation and Radiation Biology -Exo- and Astrobiology -Search for Extraterrestrial Intelligence (SETI) -Spin-off Applications from Human Spaceflight -Benefits from Space-Based Research for Health on Earth -Earth Observation for Agriculture, Climate Monitoring, Disaster Mitigation -Terrestrial Applications of Space Life Sciences Developments -Extreme Environments REACH aims to meet the needs of readers from academia, industry, and government by publishing comprehensive overviews of the science of human and robotic space exploration, life sciences research in space, and beneficial terrestrial applications that are derived from spaceflight. Special emphasis will be put on summarizing the most important recent developments and challenges in each of the covered fields, and on making published articles legible for a non-specialist audience. Authors can also submit non-solicited review articles. Please note that original research articles are not published in REACH. The Journal plans to publish four issues per year containing six to eight review articles each.